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Quarter I
“The person who, let us say, expects generosity from a bank, efficient flexibility
from a government agency, open-mindedness from a religious institution will be
disappointed . . . The poor fool might as quickly discover love among the mantises.”

– Jack Vance, The Book of Dreams

This section will ask the question: how does the world work? The microeconomic picture
consists of individual actors, with self–interest, coherency of utility, and rationality (de-
fined by tautological assumptions), who may be professionals, producers, or consumers,
who may care about status, hierarchy, and/or happiness, and who have demand for
inputs, demand for outputs, and who can supply outputs and inputs. In this quarter,
the focus will be on the basic neoclassical theory of production and consumption, and
the introductory ideas from general equilibrium. The main purpose is to equip you with
the basic tools that will allow you to analyze a broad range of economic problems on
your own using the neoclassical approach. Acquiring the necessary technical competence
and developing an intuitive grasp of each topic is usually a slow process that requires
repetition and viewing of the same subject from different angles. Problem–solving is
very important for the assimilation of the material covered.

1.1. Neoclassical Production Theory

1.1.1. Methodology

Reading: Friedman, Milton, “The Methodology of Positive Economics,” in Essays in
Positive Economics, 1953, Chicago: University of Chicago Press.

1.1.2. Alternative Views

Reading: Ronald H. Coase, “The Institutional Structure of Production” (University of
Chicago Law Occasional Paper No. 28, 1992).

1.1.3. Production Functions

There is 1 output and n inputs. The output, y, is produced with a Neoclassical produc-
tion function, F : Rn → R, such that

y = F (x1, . . . , xn).

The production function is increasing in all inputs. Some example of productions func-
tions are
• Cobb–Douglas Production: F (x1, x2) = xα1x

β
2 , where α, β > 0.

• Substitutes in Production: F (x1, x2) = Ax1 +Bx2, where A,B > 0.
• Leontiff (Fixed-Coefficients) Production: F (x1, x2) = min{cx1, dx2}, s. t. c, d > 0.

In the short–run, the production function is fixed. Note that input and output analysis
is often used.

Definition: The marginal product is the change in output that results from a change
in an input

MP ≡ ∆y

∆xi
,

or more formally for a continuous function

MP ≡ ∂F (x)

∂xi
.
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Example: Marginal Productivity with Leontiff Production
Note that, given a Leontiff production function, F (x1, x2) = min{cx1, dx2}, then

∂F (x1, x2)

∂x2
=

{
C if x2 < x1,

0 if x2 ≥ x1.

Now, consider the change in marginal product from a change in an input.

Example: Marginal Change in MP with Leontiff Production
Given a Leontiff production function, then

∂2F (x1, x2)

∂x1∂x2
= 0,

and
∂(∂F (x1,x2)

∂x1
)

∂x1
= 0.

Example: Marginal Change in MP with Cobb–Douglas Production
Given a Cobb–Douglas production function, then

∂2F (x1, x2)

∂x1∂x2
=
∂(αxα−1

1 xβ2 )

∂x2
= αβxα−1

1 xβ−1
2 > 0,

and

∂(∂F (x1,x2)
∂x1

)

∂x1
=
∂(αxα−1

1 xβ2 )

∂x1
= (α− 1)αxα−2

1 xβ2


> 0 if and only if α > 1,

= 0 if and only if α = 1,

< 0 if and only if α < 1.

Definition: When the change in the marginal product of an input from a change in the
input is negative, the production function exhibits decreasing marginal returns in that
input.

Definition: An isoquant is the set of input combinations such that any combination of
inputs yields a set level of output

{(x1, x2)|y = F (x1, x2)}.

Example: An Isoquant with Cobb–Douglas Production
Given a Cobb–Douglas production function an isoquant is given by

y = xα1x
β
2

xβ2 =
y

xα1

x2 =

(
y

xα1

) 1
β

.

Example: An Isoquant with Substitutes in Production
Given substitutes in production, then any given isoquant is linear

y = Ax1 +Bx2

x2 =
y

B
− A

B
x1.
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Considering the shape of an isoquant given a particular production function is important.

Example: The Shape of an Isoquant with Cobb–Douglas Production
Given a Cobb–Douglas production function, F (x1, x2) = xα1x

β
2 , an isoquant is given by

x2 = y
1
β x
−α
β

1 .

Notice that the the isoquant is decreasing

∂x2

∂x1
=

(
− α

β

)
x
−α
β
−1

1 y
1
β < 0,

and decreasing at an increasing rate

∂2x2

∂x2
1

=

(
− α

β

)(
− α

β
− 1

)
x
−α
β
−2

1 y
1
β > 0.

Definition: Two inputs are complementary if

∂2F (x)

∂xi∂xj
> 0.

Theorem: The Implicit Function Theorem For a continuously differentiable func-
tion, h(z1, . . . , zn), with non–zero partial derivatives, consider a point (z′1, . . . , z

′
n) such

that h(z′1, . . . , z
′
n) = 0. There is an open neighborhood around (z′1, . . . , z

′
n) such that for

every point, (z1, . . . , zn), in that neighborhood there exists a function g(z2, . . . , zn) = z1.
Furthermore, g(z2, . . . , zn) = z1 has the property that

∂g(z2, . . . , zn)

∂zi
= − ∂h(z1, . . . , zn)/∂zi

∂h(z1, . . . , zn)/∂z1
,

for i = 2, . . . , n.

It is important to know how to perform total differentiation on a productions function.
Given y = F (x1, x2), then it follows that

F (x1, x2)− y = 0

dF (x1, x2) = 0

∂F (x1, x2)

∂x1
dx1 +

∂F (x1, x2)

∂x2
dx2 = 0

∂F (x1, x2)

∂x1

dx1

dx2
+
∂F (x1, x2)

∂x2

dx2

dx2
= 0

∂F (x1, x2)

∂x1

dx1

dx2
= −∂F (x1, x2)

∂x2

dx1

dx2
= −∂F (x1, x2)/∂x2

∂F (x1, x2)/∂x1
.

Definition: The marginal rate of technical substitution (MRTS) is the rate that one
input can be substituted for another while remaining at the same level of output. It is
the slope of an isoquant of a production function and is given by

MRTS = −∂F (x1, x2)/∂x2

∂F (x1, x2)/∂x1
.

Notice that from the Implicit Function Theorem that the MRTS is negative and it can
be shown that the MRTS is decreasing (i.e. MRTS′ < 0.).

i - 3



Definition: A production function exhibits constant returns to scale if ∀θ > 0

F (θx) = θF (x).

Definition: A production function exhibits increasing returns to scale if ∀θ > 1

F (θx) > θF (x).

Definition: A production function exhibits decreasing returns to scale if ∀θ > 1

F (θx) < θF (x).

Example: Given a Cobb–Douglas production function, F (x1, x2) = xα1x
β
2 , then

F (θx1, θx2) = θα+βxα1x
β
2 .

If θα+β


> θ then there are increasing returns to scale,

= θ then there are constant returns to scale,

< θ then there are decreasing returns to scale.

Thus, the returns to scale of a Cobb–Douglas production function depend on if α+ β is
greater than, less than, or equal to 1.

Definition: A function is homogeneous of degree r if ∀θ > 0

f(θx) = θrf(x).

Theorem: Euler’s Law
If f(x) is homogeneous of degree r, then its derivatives are homogeneous of degree r− 1
and

rf(x1, . . . , xn) =
n∑
i=1

∂f(x)

∂xi
xi.
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1.1.4. Profit Maximization

A firm may wish to maximize its profits. If so, the firm’s objective is

max
y,x1,...,xn

π = py −
n∑
i=1

wixi s. t. y = f(x1, . . . , xn).

Substituting output for the production function yields

max
y,x1,...,xn

π = pf(x1, . . . , xn)−
n∑
i=1

wixi.

The first order conditions are

p
∂f(x)

∂xi
− wi = 0 for all i = 1, . . . , n.

Definition: The input demand function is

x∗i = xi(p, w) for all i = 1, . . . , n.

Definition: The factor demand function is

x(p, w) = arg max
x

pf(x)− wx.

Definition: The change in the input demand function with respect to price is positive

∂xi(p, w)

∂p
> 0 for all i = 1, . . . , n..

Next look at the change in an input choice, xi, with its input price. The input demand
function has the property of negativity

∂xi
∂wi

< 0,

and
∂xj
∂wi

< 0.

Furthermore, the input demand function has the property of symmetry

∂xi
∂wj

=
∂xj
∂wi

for all i and j.

Definition: The output supply function is given by

y(p, w) ≡ f(x∗1, . . . , x
∗
n) = f(x1(p, w), . . . , xn(p, w)) = f(x(p, w)).

The change in output with respect to the price is positive

∂y(p, w)

∂p
> 0.

Proof.
∂y(p, w)

∂p
=
∂f(·)
∂x1
(+)

∂x1

∂p
(+)

,+ · · ·+ ∂f(·)
∂xn
(+)

∂xn
∂p
(+)

�
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The profit function is given by

π(p, w) ≡ py(p, w)−
n∑
i=1

wixi(p, w).

Theorem: The profit function is non–decreasing in output price, p,

p1 ≥ p2 ⇒ π(p1, w) ≥ π(p2, w).

Proof. Suppose
p1 ≥ p2,

then by the profit maximization assumption, the profit function must satisfy

π(p1, w) = p1y(p, w)− wx(p1, w) ≥ p1y − wx for all y and x.

It follows that

π(p1, w) = p1y(p, w)− wx(p1, w) ≥ p1y(p2, w)− wx(p2, w)

π(p1, w) ≥ p1y(p2, w)− wx(p2, w) ≥ p2y(p2, w)− wx(p2, w) ≡ π(p2, w)

∴ π(p1, w) ≥ π(p2, w).

�

Theorem: The profit function is non–increasing in input prices, w,

w1 ≥ w2 ⇒ π(p, w1) ≤ π(p, w2).

Proof. Left to the reader as a problem. �

Theorem: The profit function is homogeneous of degree 1 in prices, (p, w),

π(θp, θw) = θπ(p, w) for all θ > 0.

Proof.
π(θp, θw) = θpy(θp, θw)− θwx(θp, θw)

π(θp, θw) = θ[py(θp, θw)− wx(θp, θw)] = θπ(p, w),

where
py(θp, θw)− wx(θp, θw) = py(p, w)− wx(p, w) = π(p, w),

because input choices and output level remain the same

max
x

θ(pf(x)− wx)

θ

(
p
∂f(x)

∂xi
− wi

)
= 0.

∴ π(θp, θw) = θπ(p, w).

�

The intuition to the above proof is that the profit function, π(p, w) is convex.
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Theorem: The profit function is convex in prices. Let (p1, w1) and (p2, w2) be price
vectors. Let

(p0, w0) = θ(p1, w1) + (1− θ)(p2, w2),

then, for any θ ∈ [0, 1],

π(p0, w0) ≤ θπ(p1, w1) + (1− θ)π(p2, w2).

Proof.
π(p0, w0) = p0y0 − w0x0

π(p0, w0) = (θp1 + (1− θ)p2)y0 − (θw1 + (1− θ)w2)θ0

π(p0, w0) = θp1y0 + (1− θ)p2y0 − θw1x0 − (1− θ)w2x0

π(p0, w0) = θ(p1y0 − w1x0) + (1− θ)(p2y0 − w2y0),

and by profit maximization

p1y0 − w1x0 ≤ p1y1 − w1x1.

Thus the profit function is convex in prices

π(p0, w0) ≤ θπ(p1, w1) + (1− θ)π(p2, w2).

�

Theorem: Hotelling’s Lemma
Hotelling’s Lemma is that the change in profit with respect to output price is proportional
to the output level

∂π(p, w)

∂p
= y(p, w),

and the change in profit with respect to a change in an input price is negatively propor-
tional to the input level

∂π(p, w)

∂wi
= −xi(p, w).

Proof. First,
∂π(p, w)

∂p
=
∂[py(p, w)− wx(p, w)]

∂p
.

Utilizing the Envelope Theorem

∂π(p, w)

∂p
= y(p, w) +

[
∂f(x)

∂x1

∂x1

∂
+ · · ·+ ∂f(x)

∂xn

∂xn
∂

]
− w1

∂x1

∂p
− · · · − wn

∂xn
∂p

∂π(p, w)

∂p
= y(p, w) +

∂x1

∂p

[
p
f(x)

∂x1
− w1

]
+ · · ·+ ∂xn

∂p

[
p
f(x)

∂xn
− wn

]

∴
∂π(p, w)

∂p
= y(p, w).

Second, note that
∂π(p, w)

∂wi
=
∂(pf(x(p, w))− wx(p, w))

∂wi

∴
∂π(p, w)

∂wi
= −xi(p, w).

�
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Example: A Monopolist
A monopolist sets the price, p(y), and faces the profit maximization problem

max
y,x

p(y)y − wx s. t. f(x) = y and p′(y) < 0.

First, substitute output for the production function

max
x

p(f(x))f(x)− wx.

The first order condition with respect to xi is

p′(f(x))
∂f(x)

∂xi
f(x) + p(f(x))

∂f(x)

∂xi
− wi = 0.

Let p = p(f(x)). Then

[p′(f(x))f(x) + p]
∂f(x)

∂xi
− wi = 0.

Equating the monopolist’s first–order condition to the first–order condition in perfect
competition

[p′(f(xm))f(xM) + p]
∂f(xM)

∂xi
= p

∂f(xPC)

∂xi
.

Thus

p
∂f(xM)

∂xi
+ p′(f(xm))f(xM)

∂f(xM)

∂xi
= p

∂f(xPC)

∂xi
,

and it can be concluded that

∂f(xM)

∂xi
>
∂f(xPC)

∂xi
.

The marginal product of the monopolist will be higher than the perfectly competitive
firm. Furthermore, the marginal product of an input is higher than its real price, and
there is unexploited welfare. This is known as a dead–weight loss.
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1.1.5. Cost Minimization

A firm may wish to minimize its costs, c. If so, the firm’s objective is

min c =
n∑
i=1

wixi s. t. y = f(x).

The corresponding Lagrangian is

L (x, λ) =
n∑
i=1

wixi − λ(f(x)− y),

where λ∗ > 0 and x∗i for all i = 1, . . . , n. The corresponding first order conditions are

∂L

∂xi
= wi − λ

∂f(x∗i
∂xi

= 0,

∂L

∂λ
= −f(x∗) + y = 0.

Definition: The conditional factor demand function is

hi(w, y) ≡ x∗i .

Definition: The technical rate of substitution (TRS) is

TRS ≡ −wi
wj

= −∂f(x∗)/∂xi
∂f(x∗)/∂xj

.

Definition: An isocost curve is the set of input combinations such that any combination
of inputs yields a set level of cost.

Let cost be
c = w1x1 + w2x2.

Then an isocost curve is given by

x2 =
c

w2
− w1

w2
x1.

Example: Cost Minimization with Cobb–Douglas Production
Given a Cobb–Douglas production function,

y = f(x1, x2) = xα1x
β
2 ,

the cost minimization problem for the firm is

min
x1,x2

w1x1 + w2x2 s. t. y = xα1x
β
2 .

The Lagrangian can be written

L (x, λ) = w1x1 + w2x2 − λ(xα1x
β
2 − y).

The first–order conditions are

∂L

∂x1
= w1 − λαxα−1

1 xβ2 = 0

∂L

∂x2
= w2 − λβxα1x

β−1
2 = 0

∂L

∂λ
= −xα1x

β
2 + y = 0.

i - 9



It follows that

αxα−1
1 xβ2

βxα1x
β−1
2

=
w1

w2

αx∗2
βx∗1

=
w1

w2
,

then

y = x∗1

(
w1

w2

β

α
x∗1

)β
y = x∗1

α+β

(
w1

w2

β

α

)β
.

Thus, the conditional factor demand functions given Cobb–Douglas production are

x∗1 = y
1

α+β

(
w2

w1

α

β

) β
α+β

x∗2 = y
1

α+β

(
w1

w2

β

α

) α
α+β

.

Definition: A cost function is defined as

c(w, y) ≡
n∑
i=1

wihi(w, y).

Example: The cost function given the two input Cobb–Douglas production function is

w1x
∗
1 + w2x

∗
2 = w1

[
y

1
α+β

(
w2

w1

α

β

) β
α+β
]

+ w2

[
y

1
α+β

(
w1

w2

β

α

) α
α+β
]
.

Theorem: Cost is non–decreasing in input prices, w, that is, if

w1
i ≥ w2

i ⇒ c(w1, y) ≥ c(w2, y).

Proof. Assume that w1
j ≥ w2

j . Then

c(w1, y) =
n∑
j=1

w1
jhj(w

1, y) ≥
n∑
j=1

w2
jhj(w

1, y),

is not cost minimizing. So,

c(w1, y) =

n∑
j=1

w1
jhj(w

1, y) ≥
n∑
j=1

w2
jhj(w

2, y) = c(w2, y),

is also not cost minimizing. Thus,

c(w1, y) ≥ c(w2, y).

�
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Proof. Alternative proof of non–decreasing cost with respect to input prices.
Given that w1

j ≥ w2
j , let

c(w2, y) =

n∑
i=1

w2
i x

2
i ,

where

x1
i ≡ hi(w1, y)

x2
i ≡ hi(w2, y).

Then by cost minimization
n∑
i=1

w2
i x

2
i ≤

n∑
i=1

w2
i xi,

for all xi such that f(x) = y. It follows that

c(w2, y) ≤
n∑
i=1

w2
i x

1
i ≤

n∑
i=1

w1
i x

1
i ≡ c(w1, y).

Thus,
c(w2, y) ≤ c(w1, y).

�

Theorem:

• A conditional factor demand function is homogeneous of degree 0

hi(θw, y) = hi(w, y).

• A cost function is homogeneous of degree 1

c(θw, y) = θc(w, y).

Proof. When all input prices rise proportionally, then the combination of conditional
factor demands will remain the same to minimize cost at a given level of output. Thus,
the conditional factor demand functions must be homogeneous of degree 0 (formally
prove if you wish). It follows that

c(θw, y) =
n∑
i=1

θwihi(θw, y) =
n∑
i=1

θwihi(w, y) = θc(w, y)

∴ c(θw, y) = θc(w, y).

�
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Example: Assume that there are inputs, x, of a logarithmic production function

f(x) =

{
0 if x ≤ 1.

ln(x) if x > 1.

for output, y. The cost minimization problem is

min
x
wx s. t. f(x) = y.

Assuming that x > 1, then

f(x) = ln(x)

y = ln(x)

x = ey.

The cost function is
c(w, y) = wey.

The cost function is increasing in input prices

∂c

∂w
= ey = x,

where x ≥ 0.

The cost function is increasing in output

∂c

∂y
= wey = wx,

where x ≥ 0.

Example: Assume that there are two sets of two inputs, x1 and x2, x3 and x4, that are
substitutes in a Leontiff production function

f(x) = min{x1, x2}+ 2 min{x3, x4},

for output, y. The cost minimization problem is

min
x
wx s. t. f(x) ≥ y.

If all inputs are used, then x∗1 = x∗2 and x∗3 = x∗4. It follows that

y = x1 + 2x3.

The three cases are as follows.

If (w1 + w2)y > (w3 + w4)2y, then x∗1 = x∗2 = 0 and x∗3 = x∗4 = y,(1)

If (w1 + w2)y < (w3 + w4)2y, then x∗1 = x∗2 = y and x∗3 = x∗4 = 0(2)

If (w1 + w2)y = (w3 + w4)2y, then x∗1 = x∗2 = αy and x∗3 = x∗4 = (1− α)y,(3)

where α ∈ [0, 1]. The cost function is

c(w, y) =

{
1
2(w3 + w4)y if x∗1 = x∗2 = 0 and x∗3 = x∗4 = y,

(w1 + w2)y otherwise.
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Theorem: The cost function, c(w, y), is concave in input prices, w.

Proof. First,

c(θw1 + (1− θ)w2, y) = (θw1 + (1− θ)w2)x0 = θx1x0 + (1− θ)w2x0,

where

x0 ≡ h(θw1 + (1− θ)w2, y)

x1 ≡ h(w1, y)

x2 ≡ h(w2, y).

Then by cost minimization

θx1x0 + (1− θ)w2x0 ≥ θ1x1 + (1− θ)w2x2 = θc(w1, y) + (1− θ)c(w2, y).

Thus,
c(θw1 + (1− θ)w2, y) ≥ θc(w1, y) + (1− θ)c(w2, y).

�

Theorem: Shepard’s Lemma
Shepard’s Lemma states that the change in cost with respect to an input price is pro-
portional to the level of the input’s conditional demand

∂c(w, y)

∂wi
= hi(w, y) for all i = 1, . . . , n.

Proof. Let x∗ be the cost minimizing at w∗. Define the function

z(w) ≡
n∑
i=1

wix
∗
i − c(w, y).

Since x∗ is not necessarily optimal at wi, then z(w) ≥ 0 and z(w∗) = 0. Therefore,

∂z(w∗)

∂wi
= x∗i −

∂c(w, y)

∂wi
= 0.

It follows that
∂c(w, y)

∂wi
= x∗i = hi(w, y).

�

It can then be shown that the conditional factor of demand has the property of negativity

∂hi(w, y)

∂wi
=
∂(∂c(w,y)

∂wi
)

∂wi
=
∂2c(w, y)

∂w2
i

≤ 0,

because the cost function is concave in prices.

Furthermore, the cost function has the property of symmetry

∂hi(w, y)

∂wj
=
∂(∂c(w,y)

∂wi
)

∂wj
=
∂2c(w, y)

∂wi∂wj
=
∂(∂c(w,y)

∂wj
)

∂wi
=
∂hj(w, y)

∂wi
.
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Example: Given two inputs, x1 and x2, that are substitutes in the production of output,
y, the cost minimization problem is

min
x1,x2

w1x1 + w2x2 s. t. x1 + x2 = y,

a Lagrangian could be written

L (x1, x2, λ) = w1x1 + w2x2 − λ(x1 + x2 − y).

The first–order conditions are

w1 − λ∗ = 0

w2 − λ∗ = 0.

It follows that
w1 = w2.

Notice that the isocost curve is

x2 =
c

w2
− w1

w2
x1.

In this circumstance,

h1(w1, w2, y) =


0 if w1 > w2,

k ∈ [0, y] if w1 = w2,

y if w1 < w2.

h2(w1, w2, y) =


y if w1 > w2,

k ∈ [0, y] if w1 = w2,

0 if w1 < w2.

Theorem: The Kuhn–Tucker Conditions
Given a minimization problem with an inequality constraint,

min
x
φ(x) s. t. g(x) ≥ 0,

and xi ≥ 0 for all i = 1, . . . , n, a Lagrangian can be written

L (x, λ) = φ(x)− λ(g(x)).

The first–order conditions are

∂L

∂xi
=
∂φ(x∗)

∂xi
− λ∂g(x∗)

∂xi
≥ 0,

where

∂L

∂xi
x∗i = 0

x∗i ≥ 0.

and
∂L

∂λ
= −g(x∗) ≤ 0,

where

∂L

∂λ
λ∗ = 0

λ∗ ≥ 0.

The first–order conditions must bind or else the optimal quantity is a corner solution
(i.e. its optimal choice is 0).
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Example: (Continued)
Let

∂L

∂x1
= w1 − λ∗A ≥ 0,

where

∂L

∂x1
x∗1 = 0

x∗1 ≥ 0,

∂L

∂x2
= w2 − λ∗A ≥ 0,

where

∂L

∂x2
x∗2 = 0

x∗2 ≥ 0.

and
∂L

∂λ
= −x∗1 − x∗2 + y = 0.

The cases are

w1

w2
≥ A

B
⇔ x∗1 = 0 and x∗2 > 0,(1)

w1

w2
≤ A

B
⇔ x∗1 > 0 and x∗2 = 0,(2)

w1

w2
=
A

B
⇔ x∗1 > 0 and x∗2 > 0.(3)

Example: Cost minimization with CES Production
Assume that there are two inputs, z1 and z2, of a constant elasticity of substitution
(CES) production function

f(z) = (zρ1 + zρ2)
1
ρ ,

for output, q, where 0 < ρ ≤ 1. The cost minimization problem is

min
z
wz s. t. q ≤ f(z).

The Lagrangian can be written

L = wz + λ(q − f(z)).

The first–order conditions are

∂L

∂z1
= w1 − λ(zρ1 + zρ2)

1−ρ
ρ zρ−1

1 ≥ 0,

where

∂L

∂z1
z∗1 = 0

z∗1 ≥ 0,
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∂L

∂z2
= w2 − λ(zρ1 + zρ2)

1−ρ
ρ zρ−1

2 ≥ 0,

where

∂L

∂z2
z∗2 = 0

z∗2 ≥ 0,

and

∂L

∂λ
= q − f(z∗) ≤ 0,

where

∂L

∂λ
λ∗ = 0

λ∗ ≥ 0.

If z∗2 > 0, then limz1→0
∂f(z)
∂z1

= +∞, therefore z∗1 > 0.
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1.2. Neoclassical Consumption Theory

Consider a consumer who faces a consumption set q ∈ X ⊂ Rn.

1.2.1. Preference Relations

The consumer’s preferences for x, y ∈ X are as follows.
• If x � y, then x is at least as good as y.
• If x � y and y � x, then x � y and x is strongly preferred to y.

Axiom: Completeness

(A.1) For all x, y ∈ X, then x � y or y � x.
Axiom: Transitivity

(A.2) Let x, y, z ∈ X. If x � y and y � z, then x � z.
Axiom: Continuity

(A.3) For all q ∈ X, the sets {x ∈ X|x � q} and {y ∈ Y |y � q} are closed.

Axiom: Strict Convexity

(A.4) If q1 � q2 and q2 � q0, then θq1 + (1− θ)q2 � q0, where θ ∈ (0, 1).

Definition: A function U : X → R is a utility function that represents preference
relation, �, if for all x, y ∈ X, then

x � y ⇔ U(x) ≥ U(y).

Theorem: If a utility function, U : X → R, represents preference relation, �, then the
preference relationship must satisfy completeness and transitivity.

Proof. By the definition of a utility function, x � y ⇔ U(x) ≥ U(y). Since U(·) is
real–valued, then it must be that for any q1, q2 ∈ X, then

U(q1) ≥ U(q2) or U(q2) ≥ U(q1).

It follows that either q1 � q2 or q2 � q1. Therefore the utility function satisfies the
completeness axiom (A.1).

Now, let q1, q2, q3 ∈ X and q1 � q2 and q2 � q3. From the definition of a utility function,
then

U(q1) ≥ U(q2) and U(q2) ≥ U(q3),

and because the utility function is real–valued

U(q1) ≥ U(q3).

It follows from the definition of a utility function that

q1 � q3.

Thus, given q1 � q2 and q2 � q3, then q1 � q3. Therefore, the utility function satisfies
the transitivity axiom (A.2). �

Theorem: Ordinality
If a preference relation satisfies completeness, (A.1), transitivity, (A.2), and continuity,
(A.3), then there exists a utility function, U : X → R, that represents this prefer-
ence relation. Moreover, any positive monotonic transformation of U(f : R → R) also
represents the same preferences

if ∀x � y ⇔ f
(
U(x)

)
≥ f

(
U(y)

)
.

i - 17



1.2.2. Utility Maximization

Suppose that a consumer wishes to maximize utility, u, subject to their income, m. The
optimization problem is

max
q1,...,qn

u(q1, . . . , qn) s. t.
n∑
i=1

piqi = m.

A Lagrangian can be written

L = u(q1, . . . , qn)− λ
( n∑
i=1

piqi −m
)
.

Assuming that λ∗, q∗i > 0 for all i = 1, . . . , n, then the first–order conditions are

∂L

∂λ
= −

n∑
i=1

piqi +m = 0

∂L

∂qi
=
∂u(q∗)

∂qi
− λ∗pi = 0,

for all i = 1, . . . , n. The result is the Marshallian demand functions, q∗1, . . . , q
∗
n, and λ∗.

Theorem: If the second–order conditions are satisfied, and if preferences are strictly
convex (A.4), then the utility function is strictly quasi–concave

U(θq1 + (1− θ)q2) > min{U(q1), U(q2)}, for all θ ∈ (0, 1).

A strictly quasi–concave utility function implies strict convexity of preferences, this
guarantees unique q∗i for all i = 1, . . . , n.

Proof. Suppose that, contrary to the proposition, that there are two demands that satisfy
the budget constraint and maximize utility, q∗ and q′∗. Since the utility function is quasi–
concave, then it must be

U(θq∗ + (1− θ)q′∗) > min{U(q∗), U(q′∗)}.

Then from
n∑
i=1

piq
∗
i = m

θ
n∑
i=1

piq
∗
i = θm,

n∑
i=1

piq
′∗
i = m

(1− θ)
n∑
i=1

piq
′∗
i = (1− θ)m,

it follows that
n∑
i=1

piθq
∗
i +

n∑
i=1

pi(1− θ)q′∗i = θm+ (1− θ)m

n∑
i=1

pi(θq
∗
i + (1− θ)q′∗) = m.

Therefore, there is a bundle, (θq∗ + (1− θ)q′∗), that satisfies the budget constraint and
is strictly better than q∗ and q′∗. This contradicts the original supposition. Therefore,
there must be a unique solution. �

Definition: Strict Quasi-Concavity
Say that h(x) is strictly quasi–concave if, for all x1 and x2,

h(θx1 + (1− θ)x2) > min{h(x1), h(x2)}.
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Definition: Marshallian Demand Function
The consumer’s optimal consumption choice, given prices, p, and income, m, is the
Marshallian demand

g(p,m) ≡ q∗ = argmax
q:pq≤m

u(q).

Example: Marshallian Demand with Cobb–Douglas Utility
Let the consumer’s utility function be a Cobb–Douglas specification, u(q) = qα1 q

β
2 . The

arguments of the utility maximization are the Marshallian demand functions. The opti-
mization problem is

max
q1,q2

qα1 q
β
2 s. t. p1q1 + p2q2 = m.

A Lagrangian can be written

L (q, λ) = qα1 q
β
2 − λ(p1q1 + p2q2 −m).

The first–order conditions are

∂L

∂λ
= −p1q

∗
1 − p2q

∗
2 +m = 0,

∂L

∂q1
= αq∗1

α−1q∗2
β − λp1 = 0,

∂L

∂q2
= βq∗1

αq∗2
β−1 − λp2 = 0.

It follows that

α

β

q∗2
q∗1

=
p1

p2

q∗2 =
p1

p2

β

α
q∗1

Then, substituting q∗2 into the budget constraint and solving yields

p1q
∗
1 + p2

(
p1

p2

β

α
q∗1

)
= m

p1

(
q∗1 +

β

α
q∗1

)
= m

q∗1

(
1 +

β

α

)
=
m

p1

q∗1

(
α+ β

α

)
=
m

p1

q∗1 =
m

p1

α

α+ β
.

Then q∗2 can be solved for

q∗2 =
p1

p2

β

α

m

p1

α

α+ β

q∗2 =
m

p2

β

α+ β
.

Thus, the Marhsallian demand functions are

g1(p,m) = q∗1 =
m

p1

α

α+ β

g2(p,m) = q∗2 =
m

p2

β

α+ β
.
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Definition: Indirect Utility Function
The consumer’s utility function as a function of the Marshallian demand is known as
the indirect utility function

V (p,m) ≡ U(g(p,m)) = u(g1(p,m), . . . , u(gn(p,m)) = u(q∗1, . . . , q
∗
n).

Properties:

• Non–increasing in prices;

if p1
i ≥ p2

i , then V (p1,m) ≤ V (p2,m).

• Non–decreasing in income;

if m1 ≥ m2, then V (p,m1) ≥ V (p,m1).

• Homogeneous of degree 0;

V (θp, θm) = V (p,m), for all θ > 0.

• Quasi-convex in prices;

V (θp1 + (1− θ)p2,m) < max{V (p1,m), V (p2,m)}.

• Satisfies Roy’s Identity;

gi(p,m) = −∂V (p,m)/∂pi
∂V (p,m)/∂m

.

Example: (Continued)
In the above example with Cobb–Douglas utility, the indirect utility function is

v(p1, p2,m) =

(
m

p1

α

α+ β

)α(m
p2

β

α+ β

)β
v(p1, p2,m) =

mα+β

pα1 p
β
2

ααββ

(α+ β)α+β
.

1.2.3. Expenditure Minimization

Suppose that a consumer wishes to minimize expenditure, e, subject to their utility, u.
The optimization problem is

min
q1,...,qn

n∑
i=1

piqi s. t. u(q1, . . . , qn) = u.

A Lagrangian can be written

L (q, λ) =
n∑
i=1

piqi − λ[u(q1, . . . , qn)− u].

Assuming that λ̂, q̂i > 0 for all i = 1, . . . , n, then the first–order conditions are

∂L

∂λ
= −u(q̂) + u = 0

∂L

∂qi
= pi − λ

∂u(q̂)

∂qi
= 0,

for all i = 1, . . . , n. The result is the Hicksian demand functions, q̂1, . . . , q̂n, and λ̂.
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Definition: Hicksian Demand Function
A Hicksian (compensated) demand function is the consumer’s expenditure minimizing
choice given prices, p, and utility level, u,

hi(p, u) ≡ q̂i.

The Hicksian demand is then

h(p, u) ≡ argmin
q:u(q)≥u

pq.

Definition: Expenditure Function
The expenditure function yields the minimal expenditure given prices, p, and a desired
level of utility, u,

e(p, u) ≡
n∑
i=1

pihi(p, u).

Properties:

• Non–decreasing in prices;

if p1
i ≥ p2

i , then e(p1, u) ≥ e(p2, u).

• Non–decreasing in utility;

if u1 ≥ u2, then e(p, u1) ≥ e(p, u2).

• Homogeneous of degree 1;

e(θp, u) = θe(p, e), for all θ > 0.

• Concave in prices;

e(θp1 + (1− θ)p2, u) > min{e(p1, u), V (p2, u)}.

• Satisfies Shepard’s Lemma
∂e(p, u)

∂pi
= hi(p, u).

Definition: The Slutsky Equation
The relationship between the Hicksian and Marshallian demand functions is

h(p◦, u◦) = gi
(
p◦, e(p◦, u◦)

)
.

It follows that

∂hi(p
◦, u◦)

∂pj
=
∂gi(p

◦, e(p◦, u◦))

∂pj
+
∂gi(p

◦, e(p◦, u◦))

∂m

∂e(p◦, u◦)

∂pj
,

and from Shepard’s Lemma

∂e(p◦, u◦)

∂pj
= hj(p

◦, u◦) = q◦j .

Rearranging the terms provides the Slutsky Equation

∂gi(p
◦, e(p◦, u◦))

∂pj
=

∂hi(p
◦, u◦)

∂pj︸ ︷︷ ︸
The Substitution Effect

− ∂gi(p
◦, e(p◦, u◦))

∂m
q◦j︸ ︷︷ ︸

The Income Effect

.
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Also, notice that given

V (p◦,m◦) = V (p◦, e(p◦, u◦)) = u∗,

then
∂V (p◦,m◦)

∂pi
+
∂V (p◦,m◦)

∂m

∂e

∂pi
= 0.

In turn, using Shepard’s Lemma, the expression can be written as Roy’s Identity

gi(p
◦,m◦) = −∂V (p◦,m◦)/∂pi

∂V (p◦,m◦)/∂m
.

Take note the relationship between utility maximization and expenditure minimization!

max
q
u(q) s. t. pq = m

↓

vs. min
q
pq s. t. u(q) = u

↓

g(p,m) = q∗

↓

The Slutsky Equation←−−−−−−−−−−−−→ h(p, u) = q̂
↓

Roy’s Identity

V (p,m) ≡ u(g(p,m))
Inversion←−−−−−→ e(p, u) ≡ ph(p, u)

Shepard’s Lemma

You can use inversion to transform the indirect utility function to the expenditure
function, by noting that

V (p◦,m◦) = u◦

e(p◦, u◦) = m◦.

Example: (Continued)
Given Cobb–Douglas utility, the indirect utility function is

v(p1, p2,m) =
mα+β

pα1 p
β
2

ααββ

(α+ β)α+β
.

By inversion,

u =
e(p1, p2, u)α+β

pα1 p
β
2

ααββ

(α+ β)α+β

the expenditure function is

e(p1, p2, u) = u
1

α+β p
α

α+β

1 p
β

α+β

2 (α+ β)(α
− α
α+β )(β

− β
α+β ).

Theorem: The Composite Commodity Theorem (Hicks,Leontiff)
If a group of prices move in parallel, then they can be treated as a composite commodity.

Proof. Suppose there are prices, p1, p2, and p3, such that p2 = θp◦2 and p3 = θp◦3 for all
θ > 0 and some p◦2, p◦3. If θp◦2q2 and θp◦3q3 are treated as a single commodity, then

e(p1, p2, p3, u)⇒ e∗(p1, θ, u) = e(p1, θp
◦
2, θp

◦
3, u).

By the derivative with respect to θ, and by Shepard’s Lemma, then

∂e(p1, θ, u)

∂θ
=
∂e(p1, θ, u)

∂p2
p◦2 +

∂e(p1, θ, u)

∂p3
p◦3 = q2p

◦
2 + q3p

◦
3.

�
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Example: Indirect Utility and Expenditure Functions with CRRA Utility
Let a consumer have CRRA utility, u(q) = c1−θ

1−θ , where θ = 2. The utility maximization
problem is given by

max
q1,q2

u(q) = − 1

q1
− 1

q2
s. t. pq ≤ m.

A Lagrangian can be written

L = − 1

q1
− 1

q2
+ λ(m− p1q1 − p2q2).

The first–order conditions are

∂L

∂λ
= m− p1q1 − p2q2 ≥ 0,

∂L

∂q1
=

1

q2
1

− λp1 ≤ 0,

∂L

∂q2
=

1

q2
2

− λp2 ≤ 0.

You can show that marginal utility, MUi goes to infinity for i = 1, 2. It follows that

1

q2
1

= λp1 and
1

q2
2

= λp2.

Then, solve for q1

p1q
2
1 = p2q

2
2

q1 =

(
p2

p1

) 1
2

q2,

and substitute q1 into the budget constraint

m− p2q2 − p1

((
p2

p1

) 1
2

q2

)
= 0.

The result is the optimal choice

q∗1 = m[p1 + (p1p2)
1
2 ]−1

q∗2 = m[p2 + (p1p2)
1
2 ]−1.

It follows that the indirect utility function is

V (p,m) = u(q∗) = −p1 + (p1p2)
1
2

m
− p2 + (p1p2)

1
2

m
.

The expenditure function can then be found by inversion

u = −p1 + (p1p2)
1
2

e(p, u)
− p2 + (p1p2)

1
2

e(p, u)

u = − 1

e(p, u)

[
p+ 1 + (p1p2)

1
2 + p2 + (p1p2)

1
2

]
e(p, u) = −p1 + p2 + 2(p1p2)

1
2

u
.
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1.2.4. The Labor Supply Decision

Consider a consumer that must choose how much to consume, c, labor, l, and leisure,
q0. The consumer earns a wage–rate, w, for each unit of labor, l, and receives non–labor
income, µ. There are a total of T possible units of time. Thus,

q0 = T − l.

The budget constraint is
n∑
i=1

piqi = wl + µ,

or

n∑
i=1

piqi = w(T − q0) + µ

n∑
i=1

piqi = wT − wq0 + µ

n∑
i=1

piqi + wq0 = wT + µ.

Notice that the constraint incorporates all potential income, wT + µ, and prices leisure,
q0, with the consumer’s opportunity cost, w. The profit maximization problem of the
consumer is

max
q0,...,qn

u(q0, . . . , qn) s. t.
n∑
i=1

piqi + wq0 = wT + µ.

The Marshallian demand functions can be found

gi(p, w, x) = gi(p, w,wT + µ).

Notice from the Slutsky Equation that the income effect now includes a re-evaluation
of time effect. That is, if wage, w, increases then the consumer will consume more off
all goods, including leisure, q0, but faces a higher opportunity cost of leisure. Therefore
there will be the ordinary income effect, leisure, q0 will increase and labor, l, will decrease,
and there will be a negative re-evaluation of time income effect, leisure, qo, will decrease
and labor, l, will increase. Thus, the change in time spent laboring with respect to
an increase in the wage–rate is ambiguous. In fact, this leads to the phenomena of
a backward–bending labor supply curve. Consumers will tend to labor more from an
increase in wage at low wage–rates, and will tend to labor less from an increase in wage
at high wage–rates.
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1.2.5. Decisions Under Risk

Consider a consumer who faces a a decision under objective risk.

Reading: Amos Tversky and Daniel Kahneman, “The Framing of Decisions and the
Psychology of Choice,” Science, 1981.

Definition: Lottery
A set of possible outcomes C = (c1, . . . , cn) with probability distribution P = (p1, . . . , pn),
where 0 ≤ pi ≤ 1 for i = 1, . . . , n and

∑n
i=1 pi = 1, is a lottery. Denoted

L(p1, . . . , pn) ∈ L.

Properties:

• Completeness
For all L1, L2 ∈ L, then L1 � L2 or L2 � L1.

• Transitivity

Let L1, L2, L3 ∈ L. If L1 � L2 and L2 � L3, then L1 � L3.

• Continuity

For all L ∈ L and α ∈ [0, 1], the following sets must be closed;

{αL+ (1− α)L′ � L′′}
{L′′ � αL+ (1− α)L′}.

• Independence Axiom

For all L1, L2, L3 ∈ L and α ∈ [0, 1], then

L1 � L2 ⇔ αL1 + (1− α)L3 � αL2 + (1− α)L3.

Theorem: Under completeness, transitivity, and continuity, then there is a utility func-
tion, U : L → R, such that

L1 � L2 ⇔ U(L1) ≥ U(L2).

Definition: Expected Utility
The expected utility property is that utility is linear in probabilities

U(L) =

n∑
i=1

piU(ci).

Under the Independence Axiom. any utility function is closed and any positive affine
transformation

v(x) = a+ bu(x),

where b > 0, represents the same preferences.

i - 25

http://www.brainvitge.org/papers/tverski_kahneman.pdf
http://www.brainvitge.org/papers/tverski_kahneman.pdf


Definition: Risk Aversion
A consumer is risk averse when their utility, u(L), is concave and the expected value of
a lottery, E[L], is weakly preferred to the non–deterministic lottery, L,

L � E[L]⇔ u(L) ≤ u(E[L]).

Definition: Risk Seeking
A consumer is risk seeking when their utility, u(L), is convex and a non–deterministic
lottery, L, is weakly preferred to the expected value the lottery, E[L],

L � E[L]⇔ u(L) ≥ u(E[L]).

Definition: Risk Neutrality
A consumer is risk neutral when their utility, u(L), is linear and they are indifferent
between a non–deterministic lottery, L, and the expected value of the lottery, E[L],

L ∼ E[L]⇔ u(L) = u(E[L]).

Definition: The Arrow–Pratt Measure of Absolute Risk Aversion
The Arrow–Pratt Measure of Absolute Risk Aversion (ARA) is

ARA = −U
′′(·)

U ′(·)
.

Notice that under a monotonic affine transformation

v(·) = a+ bu(·)

v′(·) =
∂v(·)
∂x

= bu′(·)

v′′(·) =
∂2v(·)
∂x2

= bu′′(·),

the ARA measures will remain the same

−v
′′(·)

v′(·)
= −u

′′(·)

u′(·)
.

Definition: Relative Risk Aversion
The measure of relative risk aversion (RRA) is given by

RRS = −xU
′′(x)

U ′(x)
.

A caveat is that when income increases, then RRA decreases.

Example: Negative Exponential Utility
Let a consumer’s utility be given by

u(x) = −e−rx,

where r > 0. It follows from

u′(x) = re−rx

u′′(x) = −r2e−rx,

that the ARA measure is

−u
′′(x)

u′(x)
= −−r

2e−rx

re−rx
= r,

where r is the relative risk aversion factor.
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Example: An Insurance Decision
Consider a consumer with wealth, W , who faces a loss, L > 0, with probability p ∈ [0, 1].
The consumer’s expected utility is

E[u] = pu(W − L) + (1− p)u(W ).

The consumer may purchase insurance coverage, q, at a premium, πq, where π > 0. The
consumer’s expected utility maximization problem is then

max
q
E[u(q)] = pu(W − L− πq + q) + (1− p)u(W − πq).

The first–order condition is

E[u′(q)] = pu′(W − L− πq∗ + q∗)(1− π) + (1− p)u′(W − πq∗)(−π) = 0.

It follows that

(1− π)pu′(W − L− πq∗ + q∗)(1− π) = (1− p)u′(W − πq∗)π
u′(W − L− πq∗ + q∗)

u′(W − πq∗)
=

1− p
p

π

1− π
.

Suppose that there is actuarially fair insurance: π = p. Then

u′(W − L− πq∗ + q∗) = u′(W − πq∗).

From the strict convexity of the utility function

W − L− πq∗ + q∗ = W − πq∗,

and there is full insurance coverage: q∗ = L.
Now, suppose that the premium exceeds the price π > p. Then

π

1− π
1− p
p

> 1

u′(W − L− πq∗ + q∗)

u′(W − πq∗)
> 1

u′(W − L− πq∗ + q∗) > u′(W − πq∗).

From the strict convexity of the utility function

W − L− πq∗ + q∗ < W − πq∗,

and the is less than full insurance coverage: q∗ < L.
However, under risk neutrality

u′(W − L− πq∗ + q∗) = u′(W − πq∗) = k > 0,

where k is some constant. The first–order condition is then

E[u′(q)] =
k

k
=

π

1− π
1− p
p

= 0

E[u′(q)] = pk(1− π)− (1− p)πk
E[u′(q)] = k[p(1− π)− (1− p)π].

Note that

E[u′(q)] = k[p(1− π)− (1− p)π] < k[π(1− π)− (1− π)π) = 0,

and because the marginal utility is negative

u′(q) < 0,

then there is no insurance coverage: q∗ = 0.
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Example: An Investment Decision with Risky Assets
A consumer with wealth, W , may invest a portion of her wealth into two assets.
• A riskless asset with return r.
• A risky asset with possible returns θ1, . . . , θn with probabilities p1, . . . , pn.

Let α ∈ [0, 1] be the percent the consumer invests in the risky asset. The consumer’s
expected utility is then

E[u(α)] =
n∑
i=1

piu(α(1 + θi)W + (1− α)(1 + r)W )).

E[u(α)] =
n∑
i=1

piu(α(1 + θi − 1− r)W + (1 + r)W ).

E[u(α)] =
n∑
i=1

piu(α(θi − r)W + (1 + r)W ).

Her marginal utility is

E[u′(α)] =

n∑
i=1

piu
′(α(θi − r)W + (1 + r)W )(θi − r)W.

Assume that r > θi for all i = 1, . . . , n. Then

E[u′(α)] < 0,

for all α and there is no investment in the risky asset: α∗ = 0.

If the consumer is risk neutral (i.e. u′(α) = k for all α), then

E[u′(α)] =
n∑
i=1

pikW (θi − r)

E[u′(α)] = kw
n∑
i=1

pi(θi − r)

E[u′(α)] = kw

[ n∑
i=1

piθi −
n∑
i=1

pir

]
E[u′(α)] = kw(E[θi]− r).

Her investment decision is then as follows.
• If E[θ] < r, then α∗ = 0.
• If E[θ] = r, then α∗ ∈ [0, 1].
• If E[θ] > r, then α∗ = 1.

If the consumer is risk averse, then her investment decision is then as follows.
• If E[θ] < r, then α∗ = 0.
• If E[θ] = r, then α∗ = 0.
• If E[θ] > r, then it depends.
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1.3. Firms, Markets, and Transactions

1.3.1. Partial Equilibrium
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1.4. Welfare Economics

1.4.1. Public Goods and Externalities

Definition: An externality is a benefeit or cost of an activity that is not enjoyed or
borne by the agent that engages in the activity.

Definition: A negative externality is a cost of an activity that is not enjoyed or borne
by the agent that engages in the activity.

Definition: A positive externality is a benefit of an activity that is not enjoyed or borne
by the agent that engages in the activity.

Theorem: The Coase Theorem
If property rights are well–defined and there are zero transaction costs, bargaining will
lead to an efficient outcome regardless of the initial assignment of property rights.

Definition: Private goods are rivalrous in consumption and excludable.

Definition: Public goods are non–rivalrous in consumption and non–excludable.

Definition: Club goods are non–rivalrous in consumption and excludable.

Definition: Common goods are rivalrous in consumption and non–excludable.
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1.5. Introduction to Game Theory

Definition: Game Theory

• “A group of agents is said to be engaged in a game whenever the fate of an agent
in the group depends not only on his own actions, but also on the actions of the
rest of the agents in the group.” (Binmore and Dasgupta, 1986).
• “Game theory concerns the behavior of decision makers (players) whose decisions

affect each other. As in noninteractive (one–person) decision theory, the analysis is
from a rational, rather than a psychological or sociological viewpoint.” (Aumann,
1988).
• “Game theory can be defined as the study of mathematical models of conflict and

cooperation between intelligent rational decision makers.” (Myerson, 1986).

There are many types of games.

Definition: Cooperative games are games where binding agreements, commitments,
promises, and threats are possible.

Definition: Non–cooperative games are games where binding agreements are not pos-
sible even if pre–play communication is possible.
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Quarter II
“Human interactions, stimulated as they are by disequilibrium, never achieve bal-
ance. In even the most favorable transaction, one party—whether he realizes it or
not—must always come out the worse.”

– Jack Vance, Rhialto the Marvellous

This quarter provides a rigorous introduction to game theory and an exploration of
game–theoretic applications including markets with asymmetric information, bargaining
and incentive contracts.

2.1. Game Theory

Definition: Game Theory

“Briefly put, game and economic theory are concerned with the interactive behavior
of Homo rationalis—rational man. . . [An] important function of game theory is
the classification of interactive decision situations.”

– Robert J. Aumann, 1985

“Game theory can be defined as the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers. Game theory provides
general mathematical techniques for analyzing situations in which two or more
individuals make decisions that will influence one another’s welfare.”

– Roger B. Myerson, 1991

“Game theory is a mathematical method for analyzing strategic interaction.”
– Nobel Prize Citation, 1994

Game theory is the study of interactive decision–making or strategic interaction. It
consists of a mathematical language for representing strategic interactions and a set of
tools for predicting the outcome of a strategic interaction.

Definition: A prediction of behavior in a game is called a solution.

Definition: A method for making such a prediction is called a solution concept.

Example: An Electoral Competition
There are two political parties, A and B. Each party independently chooses a policy
between 0 and 1 (e.g. a tax rate). A party’s objective is to maximize its vote share. Each
citizen has an ideal policy which is uniformly distributed between 0 and 1. Each citizen
votes for the party whose policy is closest to their ideal point. What is the outcome of
this game?

Example: Splitting the Bill
Five friends go out to dinner and agree in advance to split the bill. There are two items
on the menu: chicken and lobster. Each person can choose one item only. They each
value the chicken at $12 and the lobster at $20. The price is $10 for the chicken and $25
for the lobster. What does each person choose?

These are examples of static games with complete information.

Definition: In a static game, players move simultaneously, without knowledge of the
other players’ moves.

Definition: In games with complete information, players know the structure of the
game and the payoff functions of the other players.
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2.2. Strategic–Form Games and Mixed Strategies

Static games can be represented using a strategic–form representation (or normal–form
representation). When there is complete information, a strategic–form representation
has three ingredients; players, strategies, payoffs. Note that payoffs depend not only on
the agent’s strategy, but on the strategies of other players as well.

2.2.1. Strategic–Form Games

Definition: Strategic–Form Game
A strategic–form game (or normal–form game) consists of

• Players; A set of agents, N = {1, . . . , n}, with typical element i ∈ N .

• Strategies; A nonempty set of strategies, Si with typical element si ∈ Si, for each
i ∈ N . A strategy is a complete plan of action specifying what a player will do at
every point at which she may be called upon to play.

• Payoffs; A payoff function, ui : S → R for each player i, where S =
∏N
i=1 Si.

Anything with these three features can be written as a strategic–form game

G = 〈N, {Si}i∈N , {ui}i∈N 〉.

Definition: Strategy Profile
A collection of strategies, s ∈ S =

∏N
i=1 Si, is called a strategy profile.

Games with two players and a finite number of strategies can be represented by a payoff
matrix.

Example: The Prisoners’ Dilemma
“Two suspects are arrested for a crime, and interviewed separately. If they both keep
quiet (they cooperate with each other) they go to prison for a year. If one suspect
supplies incriminating evidence (defects) then that one is freed, and the other one is
imprisoned for nine years. If both defect then they are imprisoned for six years. Their
preferences are solely contingent on any jail term they individually serve.”

• The players are the two suspects, N = {1, 2}.

• The strategy set for player 1 is S1 = {C,D}, and for player 2 is S2 = {C,D}.

• The payoffs can be represented in a payoff matrix.

2.2.2. Dominance

Let s−i ≡ {s1, . . . , si−1, si+1, . . . , sn} ∈ S−i be a list of strategies for all players except i.

Definition: Dominating Strategy
Strategy si ∈ S strictly dominates strategy s′ 6= si ∈ Si for player i ∈ N if

ui(si, s−i) > ui(s
′
i, s−i) for all s−i ∈ S−i =

N∏
j=1

sj ,

where j 6= i. If the inequality is weak, ≥, then it is a weakly dominant strategy.
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Definition: Dominated–Strategy
Strategy s′ ∈ Si is strictly dominated if there is a si ∈ Si that strictly dominates it.

One would expect that a player would never choose a strictly dominated strategy, since
she can always do better by choosing a different strategy, no matter what her opponents
chooses.

Definition: Dominant–Strategy
A strategy si ∈ Si is strictly dominant for i ∈ N if it strictly dominates all s′i 6= si ∈ Si.

If a player has a strictly dominant strategy, it is always better than her other strategies,
no matter what the other players do.

Example: The Prisoners’ Dilemma (Continued)
The Prisoner’s Dilemma provides a simple example of a game with a strictly dominant
strategy.

Here, D is a strictly dominant strategy for each player, and C is a strictly dominated
strategy for each player. Therefore, {D,D} is a dominant–strategy equilibrium.

Definition: Dominant–Strategy Equilibrium
A strategy s∗i ∈ Si is a dominant–strategy equilibrium if

ui(s
∗
i , s−i) ≥ ui(si, s−i),

for all players i ∈ N and for all strategy profiles (si, s−i) = s ∈ S.

2.2.3. Iterated Deletion of Strictly Dominated Strategies

Consider the following game.

For the column player, M is strictly better than R. The game simplifies.

Now, for the row player, B is better than T .

Thus, L beats M , leaving {B,L} the only strategy that survives the iterated deletion
of strictly dominated strategies. Notice that there are higher–order beliefs. If column
player is rational, then she will not play R. If row player is rational and knows that
column player is rational, then she will not play T . If column player is rational, knows
that row player is rational, and knows that row player knows that column player is
rational, won’t play M .
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The iterated deletion of strictly dominated strategies general algorithm is as follows.

• Step 1. If a strategy is strictly dominated for one player, delete it for that player
and analyze the reduced game.

• Step 2. After one deletion, a strategy may become strictly dominated that was
not originally so. Repeat the process until no more deletions are possible.

The remaining set of strategies for each player is nonempty and does not depend on the
order of deletion, except if iteratively deleting weakly dominant strategies.

Example: The Battle of the Sexes
“Two students need to meet up to discuss their love for economics. They can meet in
either the pub or the cafe. One likes coffee, and prefers the cafe. The other enjoys a
pint of beer, and prefers the pub. They would both rather meet (wherever it may be)
than miss each other.”

• The players are the first student, (row) and the second (column).

• Row chooses x ∈ {Cafe,Pub}, and column chooses y ∈ {Cafe,Pub}.

• The payoffs can be represented in a strategic-form matrix.

Notice that neither strategy is strictly (or weakly) dominated, and iterated deletion of
dominated strategies does not rule out anything.

2.2.4. Nash Equilibrium

Definition: Nash Equilibrium
A Nash equilibrium is a strategy profile s∗ ∈ S such that for each i ∈ N

ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i),

for all si ∈ Si. At s∗, no i will regret playing s∗i , that is, given all the other players’
actions, i can not do better with any other strategy. Hence, a Nash equilibrium is a
strategy profile from which no player has a profitable unilateral deviation.

Example: The Battle of the Sexes (Continued)

Note: The arrows represent what each player would do given the choice of their opponent.

Both {Cafe,Cafe} and {Pub,Pub} are Nash equilibria. Neither player has an incentive
to deviate from their strategy given the strategy of their opponent.
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Example: Consider the game from earlier.

Note: Nash equilibria are strategy profiles where every payoff is underlined.

This game suggests an alternative (equivalent) definition for Nash equilibrium involving
best replies, where a Nash equilibrium is a collection of mutual best replies.

Definition: Best–Reply
The best–reply correspondence for player i ∈ N is a set–valued function Bi such that

Bi(s−i) = {si ∈ Si|ui(si, s−i) ≥ ui(s′i, s−i),∀s′i ∈ Si}.

So that Bi(s−i) ⊆ Si “tells” player i what to do when the other players play s−i.

Definition: Nash Equilibrium (Alternative)
The strategy s∗ ∈ S is a Nash equilibrium if and only if

s∗i ∈ Bi(s∗−i),

for all i ∈ N . That is, a Nash equilibrium is a strategy profile of mutual best replies.
Each player picks a best reply to the combination of strategies chosen by the other
players.

Example: The Stag Hunt
“Two hunters simultaneously choose to hunt for rabbits, or to hunt for a stag. Success-
fully capturing a stag requires coordination, but there will be lots of meat. Anyone can
catch a rabbit, but there will be less meat, especially when both are hunting rabbits (all
that noise. . . )”
• The players are hunters 1 and 2 (row and column respectively).
• Each player can choose either Rabbit, R, or Stag, S.
• The payoffs can be represented in a strategic–form matrix.

There are Nash equilibria at {R,R} and {S, S}. The latter outcome is Pareto optimal,
but it is not certain that it will be played.

Example: The Hawk–Dove Game
This is the classic biological game, where two players may either fight over a resource
(Hawk) or yield (Dove). A Hawk beats a Dove, gaining the resource, of value v, with 0
for the Dove. Two Doves split the payoff v equally. Two Hawks have equal chance of
winning the fight. The loser pays a cost c, where v < c. Given that v = 4 and c = 6,
the game can be represented in a strategic–form game as follows.

There are two asymmetric Nash equilibria at {Hawk,Dove} and {Dove,Hawk}.

ii - 5



Nash equilibrium requires more than rationality, it requires equilibrium knowledge where
each player knows the strategy played by every other player in equilibrium.

Example: Rock–Paper–Scissors
Given two players who can play rock, R, scissors, S, or paper, P , with payoffs of 1 for
winning, −1 for losing, and 0 for a tie, then the game can be represented in a strategic–
form matrix.

There are no pure–strategy Nash equilibria.

“Would row ever play R? Yes, if row thought column was playing S. Is this a rational
belief? Yes, if row believes column believes row will play P . Is this a rational belief?
Yes, if row believes column believes row believes column will play R. Is this a rational
belief? Yes if. . . ” Eventually, this process will return to “. . . believes row will play R,”
then R is said to be rationalizable.

2.2.5. Rationalizability

Definition: Rationalizability
Strategy si ∈ Si is rationalizable in the game G = 〈N, {Si}i∈N , {ui}i∈N 〉 if for all j ∈ N ,
there is a set Rj ⊆ Sj such that si ∈ Ri and every action sj ∈ Rj is a best reply to a

belief µj(sj) of player j whose support is a subset of R−j =
∏N
k=1Rk, where k 6= j.

Note that this is circular reasoning. A strategy is rationalizable if it is a best reply to
a combination of opponents’ strategies that are all rationalizable. However, the formal
definition does make sense! In the above examples:
• D is rationalizable in the Prisoners’ Dilemma
• Cafe and Pub are rationalizable in the Battle of the Sexes.
• R and S are rationalizable in the Stag Hunt
• Hawk and Dove are rationalizable in the Hawk–Dove game.
• R, S, and P , are rationalizable in the Rock–Paper–Scissors game.

Example: Reconsider the following game.

Note that M is not rationalizable. For column to play M , column must believe row will
play T . For this belief to be rational, column must believe that row believes that column
will play R. For this belief to be rational there must be a belief for column to which R
is a best reply. There is not—R is strictly dominated. In fact, only B is rationalizable
for row and L rationalizable for column.

Theorem: Let R =
∏N
i=1Ri, where Ri is the set of rationalizable strategies for i ∈ N ,

Z is the set of Nash equilibria, and A is the set that survives iterated deletion of strictly
dominated strategies. Then

Z ⊆ R ⊆ A ⊆ S.
Under the current definition of rationalizability R = A if the mixed extension of the
game is used.
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2.2.6. Mixed Strategies

Theorem: The Nash Theorem
Every finite strategic–form game has at least one Nash equilibrium.

Example: The Fashion Game
“A fashion leader and a fashion follower simultaneously choose a style of dress, A or B.
The follower wants to choose the same style of dress as the leader. The leader wants to
choose the opposite.”

There is no “pure–strategy” Nash equilibrium. Neither rationalizability nor iteratively
eliminating strictly dominated strategies help to reach a solution.

Note that players can also mix between strategies—such a mixture is called a mixed
strategy. In some contexts the most salient or even the only Nash equilibria involve
mixed strategies.

Definition: Mixed–Form Games
The mixed extension of a game G = 〈N, {Si}i∈N , {ui}i∈N 〉 is the game Γ, where

• Γ = 〈N, {∆(Si)}i∈N , {Ui}i∈N 〉,

• ∆(Si) is the set of probability distributions over Si, and ∆(S) =
∏N
i=1 ∆(Si),

• Ui : ∆(S) → R is a von–Neumann–Morgenstern expected utility function that
assigns to each σ ∈ ∆(S) the expected value under ui of the lottery over S induced
by σ.

Suppose that player i plays mixed strategy σi ∈ ∆(Si) in a finite game. Denote the
probability that this places on pure strategy si ∈ Si as σi(si). Then a player’s payoff is

Ui(σ) =
∑
s∈S

ui(s)
∏
j∈N

σj(sj).

Define σ−i ∈ ∆(S−i) ≡
∏
j 6=i∈N ∆(Sj) as the mixed strategies of all players except i.

Example: Matching Pennies
For matching pennies, the players are N = {1, 2}. The pure strategies are Si = {H,T}.

The mixed extension has the same set of players and mixed strategies

σ1 = (p, 1− p), where 0 ≤ p ≤ 1,

σ2 = (q, 1− q), where 0 ≤ q ≤ 1.

The payoff for a player is given by

Ui(σ) =
∑
s∈S

ui(s)
∏

j∈{1,2}

σj(sj)

Ui(σ) = ui(H,H)σ1(H)σ2(H) + · · ·+ ui(T, T )σ1(T )σ2(T ).
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Definition: Mixed Strategy Best–Reply
The best–reply correspondence of the mixed extension is

Bi(σ−i) = {σi|Ui(σi, σ−i) ≥ Ui(σ′i, σ−i),∀σ′i}.

Example: Matching Pennies (Continued)
If σ2 = (q, 1− q), then

U1(H, q) = (1− q)− q = 1− 2q

U1(T, q) = q − (1− q) = 2q − 1.

So, player 1 plays H if q < 1
2 (i.e. p = 1), and plays T if q > 1

2 (i.e. p = 0). If q = 1
2 ,

then player 1 is indifferent and any p will suffice. If σ1 = (p, 1− p), then

U2(H, p) = p− (1− p) = 2p− 1

U2(T, p) = (1− p)− p = 1− 2p.

So, player 2 plays T if p < 1
2 (i.e. q = 0), and plays H if p > 1

2 (i.e. q = 1). If p = 1
2 ,

then player 2 is indifferent and any q will suffice. The best–reply correspondence is as
follows.

Theorem: A mixed-strategy Nash equilibrium of a game, G, is a Nash equilibrium of
its mixed extension, Γ.

Definition: Mixed–Strategy Nash Equilibrium
A mixed–strategy Nash equilibrium is a strategy profile σ∗ ∈ ∆(S), such that

Ui(σ
∗
i , σ
∗
−i) ≥ Ui(σi, σ∗−i),

for all σi ∈ ∆(Si) and i ∈ N .

Alternatively, σ∗ ∈ ∆(S) is a Nash equilibrium if and only if

σ∗i ∈ Bi(σ∗−i),

for all i ∈ N .

Properties:

• For a mixed strategy, σi, to be a best reply to a given combination of opponents’
strategies, σ−i, every pure strategy in its support must also be a best reply to the
opponents’ strategies, σ−i.
• All pure strategies in the support of the equilibrium strategy for a given player

must yield the same payoff to that player.

Note that definitions for rationalizability and dominance can be extended to mixed
strategies as well.
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Example: Matching Pennies (Continued)
Continue consideration of the matching pennies game.
If a player mixes strategies, then they must be indifferent between the two pure strategies.
The column player is indifferent only when

U2(H, p) = U2(T, p)

2p− 1 = 1− 2p

p =
1

2
.

Similarly, the row player is indifferent only when

U1(H, p) = U1(T, p)

1− 2q = 2q − 1

q =
1

2
.

The mixed–strategy equilibrium is therefore (1
2 ,

1
2). Notice that row player’s equilibrium

strategy is determined by column’s payoffs and vice versa.

Example: The Battle of the Sexes Revisited
The players are student 1 (row) and student 2 (column). The strategies available to
both players are Cafe and Pub. The row player chooses Cafe with probability x ∈ [0, 1],
and the column player chooses Cafe with probability y ∈ [0, 1]. The mixed extension of
the game can be represented in a strategic form matrix.

The expected payoffs are

U1(Cafe, y) = 4y + (1− y)

U1(Pub, y) = 3(1− y),

U2(Cafe, x) = 3x

U2(Pub, x) = x+ 4(1− x).

Thus, the row player chooses Cafe, x = 1, whenever

U1(Cafe, y) > U1(Pub, y)

4y + (1− y) > 3(1− y)

y >
1

3
,

and column player chooses Cafe, y = 1, whenever

U2(Cafe, y) > U2(Pub, y)

3x > x+ 4(1− x)

x >
2

3
.

The equilibria occur where σi ∈ Bi(σ−i), for all i = 1, 2. There are two pure equilibria

x = y = 1

x = y = 0,

and there is one mixed equilibrium, x = 2
3 and y = 1

3 .
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You can note that, generically, there are an odd number of equilibria. Also, in mixed
extensions of finite games, the best–reply correspondences will be continuous. Thus, the
best–response functions must always intersect and there must exist a Nash equilibrium.

Example: Consider the following game.

By inspection, there are two pure-strategy Nash equilibria at (B,L) and T,R). Suppose
that player 1 (the row player) places probability p on T and probability (1 − p) on B.
Then, player 2’s best reply is to play R if

U2(L, p) ≤ U2(R, p)

p+ 3(1− p) ≤ 2p

p ≥ 3

4
.

If player 2 places probability q on L and (1− q) on R, then T is only ever a best reply
to q = 0. Thus, T is weakly dominated by B. Nevertheless there is an equilibrium at
(T,R). It follows that player 1’s best-reply correspondence is

B1(q) = 0 if q > 0,

B1(q) = p with 0 ≤ p ≤ 1 if q = 0,

and player 2’s best–reply correspondence is

B2(p) = 1 if p <
3

4
,

B2(p) = 0 if p >
3

4

B2(p) = q ∈ [0, 1] if p =
3

4
.

The best–reply correspondances are as follows.

There is a continuum of mixed-strategy equilibria at 3
4 ≤ p ≤ 1, all with q = 0. As long

as player 1 places high enough probability on T , then R is a best reply. If R is played,
mixing is possible for player 1.
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Example: Dominance and Mixed Strategies
In the following game, no strategy is strictly dominated by another pure strategy.

Suppose that the column player plays L with probability 1
2 and M with probability 1

2
so that σC = (1

2 ,
1
2 , 0). Then,

UC(σC , σR) = 5,

regardless of what the row player plays for all σR. Thus, R is strictly dominated by a
mixed strategy placing probability 1

2 on L and M . Only one strategy profile survives
iterated deletion of dominated strategies, {T, L}.

Example: Never Best–Replies
Consider the above game. Below is a plot of plot of column’s payoffs to each strategy.
Irrespective of the value of the belief x, R is never a best–reply. In fact, a strategy is
strictly dominated if and only if it is never a best–reply. Rational players would always
play a best–reply given some beliefs.

Example: A Return to Rationalizability
In the above game, only T and L are rationalizable. Consider R. It is not rationalizable
as there is no belief such that R would be a best reply. Thus, B is not rationalizable,
because the row player would need to believe R is to be played by the column player.
Thus, M is not rationalizable, as this requires the column player to believe that the row
player will play B.

If you restrict the game to pure strategies, then no strategies are strictly dominated.
That is, the set of rationalizable strategies is a subset of the set of iterated deletion of
dominated strategies survivors.

If you allow for mixed strategies, then R is strictly dominated by a 50 : 50 mix over
L and M . Then B is strictly dominated by T , and then M is strictly dominated by
L. So, now the set of rationalizable strategies is equal to the set of iterated deletion of
dominated strategies survivors.
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Example: Dominated Mixed Strategies
Consider the game with different payoffs.

Note that neither the pure strategy L nor M is strictly dominated by R. The strategy
which places probability 1

2 on each of L and M earns 5. This is strictly dominated by
R. The Nash equilibrium are

{T, L}, {B,M}, {x ∈ [ 3
10 ,

7
10 ], R}.

A mixed strategy with positive weight on a strictly dominated pure strategy is strictly
dominated. But a mixed can be dominated by a pure even if all strategies in its support
are undominated.
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2.3. Static Oligopoly

2.3.1. Oligopoly versus Monopoly

Example: A Monopoly
Consider a single firm in an industry. It faces a demand curve x(p), and so will choose
p. The firm’s profit maximization problem is

max
p
π(p) = px(p)− c

(
x(p)

)
,

or alternatively
max
q
π(q) = p(q)q − c(q).

At an optimal quantity, q∗ > 0, therefore, the first–order condition holds

p′(q∗)q∗ + p(q∗) = c′(q∗).

The marginal revenue is
r′(q) = p′(q∗)q∗ + p(q∗).

Thus, at the optimum marginal revenue equals marginal cost

r′(q∗) = c′(q∗).

Furthermore, note that demand is downward sloping, p′(·) < 0. It follows from

p(q∗) = c′(q∗)− p′(q∗)q∗,

that under monopoly the equilibrium price exceeds the marginal cost of production

p(q∗) > c′(q∗).

Perfectly competitive prices are such that pPC = c′(qPC). Thus,

q∗ < qPC

p∗ > pPC,

and there is a deadweight loss.

The monopoly case is essentially a decision problem. In oligopolistic industries, however,
behavior is strategic where the strategy sets are continuous.
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2.3.2. Cournot Competition

Two profit-maximizing firms simultaneously choose production quantities of a homoge-
neous good. Market price is decreasing in total quantity Q, with linear demand

p = a− bQ.

There are constant unit production costs of c for each firm.
• The players are the two firs, i ∈ {1, 2}.
• Player 1 chooses quantity x ∈ [0,∞) and player 2 chooses quantity y ∈ [0,∞).
• The payoffs are profits for player 1 and player 2 respectively

π1 = x[a− b(x+ y)− c],
π2 = y[a− b(x+ y)− c].

In order to find an equilibrium, first fix firm 2’s strategy and calculate a best reply for
firm 1, yielding a best–reply function. Then, fix firm 1’s strategy and calculate a best
reply for firm 2, yielding a second best–reply function. You can then solve the best–reply
functions simultaneously to find a Nash equilibrium.

Fixing y, then the profits for player 1 are strictly concave in x and the first–order
condition can be calculated as

∂π1

∂x
= [a− b(x+ y)− c]− bx = 0

a− 2bx− by − c = 0.

Rearranging obtains
2bx = a− by − c,

that in turn implies

B1(y) =
(a− by − c)

2b
.

Below is a plot of a reaction function for a = b = 1, and c = 0.

Note that the reaction function is downward sloping

∂B1(y)

∂y
= −1

2
< 0.

Thus, the quantities, x and y, are strategic substitutes in this submodular game.
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At a Nash equilibrium, players mutually best reply

x = B1(y),

y = B2(x).

So,

x =
a− by − c

2b
and y =

a− bx− c
2b

.

If you solve these two equations simultaneously, then the solution will be symmetric
since the first-order conditions depend only on demand, Q. From symmetry, then

x =
a− bx− c

2b
,

and solving yields

2bx = a− bx− c
3bx = a− x

x∗ =
a− c

3b
,

and by symmetry,

y∗ =
a− c

3b
.

The reaction functions and equilibrium are plotted below.
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Example: Strictly Dominated Strategies in the Cournot Model
The Cournot–Nash equilibrium strategies are the only survivors from the iterated dele-
tion of strictly dominated strategies. Assume that a = b = 1, and c = 0. Then

π1 = x(1− x− y)

π2 = y(1− x− y).

Consider the strategies x, y ∈ (1
2 ,∞), that are strictly dominated by x, y = 1

2 with profit

π1 = 1
2(1

2 − y)

π2 = 1
2(1

2 − x).

Suppose to the contrary, for some y, then

x(1− x− y) >
(1

2 − y)

2
⇔ (1

2 − x)y > 1
4 − x+ x2.

Since y ≥ 0, and x ∈ (1
2 ,∞), then the left–hand side is less than or equal to zero. The

right-hand side is minimized at zero when x = 1
2 , and therefore is positive. This is a

contradiction. The same is true for y > 1
2 .

Now consider the strategies x ∈ [0, 1
4). These strategies are strictly dominated by x = 1

4 .
The payoffs are x(1− x− y) and 1

4(3
4 − y) respectively. Suppose again, to the contrary,

that for some y ≤ 1
2 , then

x(1− x− y) >
(3

4 − y)

4
⇔ (1

4 − x)y > 3
16 − x+ x2.

The inequality holds for some y ≤ 1
2 if and only if

(1
4 − x)1

2 >
3
16 − x+ x2 ⇔ 0 > 1

16 −
1
2x+ x2,

which is a contradiction. This process continues until the only choice that remains is

x = y = 1
3 .

Example: Equilibrium in General Cournot Games
In general, let there be n firms. Firm i has a constant marginal cost, ci, and inverse
demand, P (Q). The objective of the firm is to maximize profits. If demand is less than
the firm’s cost, P (Q) < ci, then the firm does not operate, qi = 0. Otherwise, the firm’s
maximization problem is

max
qi

πi = qi[P (Q)− ci].

The first order condition is

∂πi
∂qi

= P (Q)− ci + qiP
′(Q) = 0.

Solving yields

q∗i = −P (Q)− ci
P ′(Q)

.

Individual quantities are defined by industry supply Q. Thus, if ci = c for all i, then
any equilibrium is symmetric.
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Example: Cournot Competition with Asymmetric Cost
If the cost structures of the firms are asymmetric, ci 6= c for all i, then you can determine
the equilibrium Q by summing the first–order conditions for all n firms (the total optimal
production level) and dividing by the total demand, P (Q). Then divide by the number
of firms, n, to find a given firms production level

nP (Q)− [
∑n

i=1 ci]

P (Q)
+
QP ′(Q)

P (Q)
= 0⇔

P (Q)− 1
n

∑n
i=1 ci

P (Q)
=

1

nc
.

Hence outcome is determined by the industry–average of marginal cost. In games where
there is a single state variable (here, Q), determining equilibria involves solving a single
fixed-point equation.

Example: Cournot Competition versus Perfect Competition
Let marginal costs be constant and equal to c for every firm. In n–firm Cournot Com-
petition then

P (Q) + qiP
′(Q) = c

nP (Q) + P ′(Q)

n∑
i=1

qi = nc

P (Q) + P ′(Q)
Q

n
= c.

Since demand is downward sloping, P ′(·) < 0, then

P (Q) > c.

In perfect competition
P (QPC) = c.

thus
Q < QPC.

It can be concluded that competitive industries produce more, and at a lower price.

Example: Cournot Competition versus Monopoly
Now, suppose the monopoly optimal quantity is q∗. Suppose that q∗ > Q. Take a
particular firm i, and let firm i increase qi so that the new industry quantity is q∗. Then
joint profits must increase as they are maximized at q∗ by definition. However, the
aggregate quantity has risen, so price has fallen, and the other firms (who didn’t alter
their quantities) are worse off. As joint profits have risen, i must be better off and faces
a profitable deviation. Therefore, q∗ ≤ Q. Note though, that q∗ 6= Q since the above
equation can’t be satisfied by the same Q at n > 1 and n = 1. Thus,

q∗ < Q,

P (q∗) > P (Q),

a monopoly produces less, and at a higher price than firms under Cournot cometition.
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2.3.3. Bertrand Competition

Two firms selling identical products must simultaneously choose what price to charge.
The firm that charges the lower price gains the entire market, but firms would rather
charge high prices. A group of consumers will only buy if the price is less than p. For
simplicity, and without loss of generality, the marginal cost of production is zero, c = 0.
• The players are the two firms, i ∈ N = {1, 2}.
• The strategy of each player i is to set price pi ∈ [0,∞].
• The payoff for each player is their profit

πi =


pi if pi < min{p, pj},
pi
2 if pi = pj < p,

0 if pi ≥ p or pi > pj .

There is a unique pure–strategy Nash equilibrium at p1 = p2 = 0.

Proof. If the lowest price were negative, then that firm would make a loss. If the lowest
price were strictly positive, then opponent should undercut and steal the entire market.
If one price is zero, e.g. 0 = pi < pj , then firm i should raise its price. Hence the only
possibility is p1 = p2 = 0, where there is no better reply. �

Notice that best-reply functions are not well–defined everywhere. Suppose, for example,
that 0 < pj < p. Then it is always a best–reply for player i to undercut player j, but
she would like to do so by ε as small as possible without ε = 0. Mathematically, the
set of feasible payoffs is open above, that is, cannot attain a maximum. The Bertrand
specification is degenerate—owing to the discontinuity in payoffs.

2.3.4. The Hotelling Line

Two firms are located at either end of a unit interval [0, 1]. A unit mass of consumers
(each with unit demand) is distributed uniformly on the interval. The firms charge pi
and pj respectively for a homogeneous good produced with constant marginal cost, c.
The cost of buying from firm i is

pi + td,

where t is a unit transport cost and d is the distance from firm i. A particular consumer,
z ∈ [0, 1], will buy from i, who is positioned at 0, if

pi + tz < pj + t(1− z).

The indifferent consumer, z, satisfies

pi + tz = pj + t(1− z),

z =
t+ pj − pi

2t
.

Assuming z ∈ [0, 1], then firm i’s demand is given by

qi = z =
1

2
+
pj − pi

2t
.

Note that

qi =

{
1 if z > 1,

0 if z < 0.
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2.3.5. Differentiated Products

An alternative interpretation to Bertrand Competition is where there are two firms
selling differentiated products who simultaneously choose prices. Total market size is a
single unit mass. Each consumer is willing to pay a large amount to obtain a product.
They do not necessarily buy from the cheapest firm, however, if pj − pi > t, then firm i
captures the whole market, qi = 1 and qj = 0, and vice versa. If |pj − pi| ≤ t, then the
firms split the market depending on the price difference

qi =
1

2
+
pj − pi

2t
.

• The players are the two firms, N = {i, j}.
• The strategies for each player i is to set price pi ∈ [0,∞).
• The payoff for player i is

πi =


0 if pi − pj > t,

pi − c if pj − pi > t,

(pi − c)
(

1
2 +

pj−pi
2t

)
otherwise.

Note that profit is concave in prices. Therefore, you can differentiate the profit function
to obtain the first–order condition

∂πi
∂pi

=
t+ pj − 2pi + c

2t
= 0.

Solving for pi yields the best–reply function

Bi(pj) =
t+ c+ pj

2
.

Note that the best–reply function is upward sloping ∂Bi
∂pj

> 0. Thus, prices are strategic

complements and the game is supermodular. Also, note that this solution only applies
when |pj − pi| ≤ t. In fact,

Bi(pj) =


c if pj < c− t,
t+c+pj

2 if c− t ≤ pj ≤ 3t+ c,

pj − t if 3t+ c < pj .

For an interior equilibrium
pi =

t+ c+ pj
2

.

Symmetry ensures that pi = pj = p∗.
So,

p∗ =
t+ c+ p∗

2
p∗ = t+ c.
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2.3.6. Submodular and Supermodular Games

Consider a game with two players, i ∈ N = {1, 2}, with strategies for player 1, who
chooses x ∈ X ⊆ R, and player 2, who chooses y ∈ Y ⊆ R, and the payoffs, u1(x, y) and
u1(x, y), are symmetric

u1 = u2 = u.

You can calculate the slope of a player’s best–reply function

∂u(x, y)

∂x
= 0

∂2u(x, y)

∂x∂y
+
∂2u(x, y)

∂x2

dx

dy
= 0

dx

dy
= −∂

2u(x, y)/∂x∂y

∂2u(x, y)/∂x2
.

Note that from the second–order conditions that the denominator is negative. Therefore,
the sign of the slope of the best–reply function is determined by numerator

∂2u(x, y)

∂x2
< 0⇒ sign

{
dx

dy

}
= sign

{
∂2u(x, y)

∂x∂y

}
.

Definition: Supermodular Game (Informal)
The game G = 〈{1, 2}, {X,Y }, {u, u}〉 is supermodular if

∂2u(x, y)

∂x∂y
> 0,

and so Bi(y) is upward sloping, and X and Y are said to be strategic complements.

Definition: Submodular Game (Informal)
The game G = 〈{1, 2}, {X,Y }, {u, u}〉 is submodular if

∂2u(x, y)

∂x∂y
< 0,

and so Bi(y) is downward sloping, and X and Y are said to be strategic substitutes.
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Example: Non–Monotonic Best–Replies in an Advertising Game
Two firms sell a product in a market of fixed size. Suppose that prices are fixed at 1,
but that each firm must choose an advertising budget, denoted by x and y respectively.
Advertising is costly, but firms want to obtain a high market share. Advertising is the
sole determinant of market share, yielding sales of x

x+y and y
x+y respectively

• The players are the two firms, N = {1, 2}.
• The strategies are firm 1 chooses x ∈ [0,∞) and firm 2 chooses y ∈ [0,∞).
• The payoffs are the respective profits of the firms

π1(x, y) =
x

x+ y
− x and π2(x, y) =

y

x+ y
− y.

First, consider firm 1’s maximization problem. The first–order condition implies that

∂π1

∂x
=

1

x+ y
− x

(x+ y)2
− 1 = 0

1

x+ y
=

x

(x+ y)2
+ 1

x+ y = x+ (x+ y)2

√
y = x+ y,

x∗ =
√
y − y.

By symmetry the best response functions are

B1(y) =
√
y − y

B2(x) =
√
x− x.

The best-reply functions for this game slope upward initially, then downward. The best–
reply functions are non–monotonic. The game is neither supermodular nor submodular.
Variables are both strategic complements and substitutes, depending on the region.

At Nash equilibrium, x = B1(y) and y = B2(x), hence

x∗ = y∗ = 1
4 .

Note that B1(y) and B2(x) only make sense for y > 0 and x > 0. If neither firm
advertised, then π1(0, 0) = π2(0, 0) = 1

2 , is an equilibrium, although arguably ‘unstable’.
Whereas, π1(1

4 ,
1
4) = π2(1

4 ,
1
4) = 1

4 , is a stable Nash equilibrium.
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Example: Mixed–Strategy Nash Equilibrium in an Investment Game
Two firms choose investment levels from the unit interval. The firm with the higher
investment wins the market, which has unit value. If the same level is chosen, they split
the market 50 : 50.
• The players are the two firms, i ∈ N = {1, 2}.
• The strategies are firm 1 chooses investment level x ∈ X = [0, 1] and firm 2 chooses

investment level y ∈ Y = [0, 1].
• The mixed strategies for firm 1 and firm 2 are the distributions F (x) and G(x) on

[0, 1] respectively.
• The payoffs are the expected profit flows of the firms

π1(x, y) =


1− x if x > y,
1
2 − x if x = y,

−x if x < y,

and π2(x, y) =


−y if x > y,
1
2 − y if x = y,

1− y if x < y.

Notice that there are no pure-strategy Nash equilibria. If y < 1, then player 1 would do
better with x = y + ε < 1. If x = y = 1, then firm 1 would do better to choose x = 0.
There is, however, a mixed–strategy Nash equilibrium.

Recall the indifference property of mixed equilibria. Argue that there is an equilibrium,
such that in mixed equilibria a player must be indifferent across all the pure strategies
they mix over. Hence all x in the support of player 1’s strategy F (·) must yield a constant
amount in expectation.
• The probability player 1 wins with x is Pr[x > y] = G(x).
• The probability player 1 loses with x is Pr[x < y] = 1−G(x).
• The probability player 1 draws with x is Pr[x = y] = 0.

For all x in the support of F (·), player 1’s expected payoff is

E(π1) = −x[1−G(x)] + [1− x]G(x) = k ⇔ G(x) = x+ k.

Suppose that x = 0 is in the support of F (·). Then G(0) = 0 since this is a CDF, and
so k = 0. In this case, G(x) = x, and E(π1) = 0. Symmetry implies there is a Nash
equilibrium where both players mix uniformly over [0, 1]. In fact, it can be shown that
this is the only Nash equilibrium of this game1.

Definition: Uniqueness
A mixed equilibrium strategy is unique if there are no atoms in the distribution, there
are no gaps in the distribution, the distribution has full support on [0, 1]. There is only
one such distribution.

1 There are games that have no Nash equilibria at all (pure or mixed). This property is known as
non–existence. Recall that in finite games there was always at least one (possibly mixed) equilibrium.
However, the world is continuous and there are often infinite states.
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2.4. Bayesian Games and Extensive–Form Games

2.4.1. Incomplete Information

Thus far, it has been assumed that the structure of the game is common knowledge. In
particular, every player knows the other players’ payoff functions, knows that the other
players know her payoff function, knows that the other players know that she knows
their payoff functions. . . ad infinitum. Is it reasonable that a player can predict with
certainty how an opponent will best respond? Suppose that you face an opponent that
can be one of a number of different types, each of which respond differently (e.g. an
altruistic type, a spiteful type). When players do not know their opponent’s type, you
have a game of incomplete information. This creates a problem because a player must
form beliefs about her opponent’s type, about her opponent’s beliefs about her type,
about her opponent’s beliefs about her beliefs about her opponent’s types, etc. The
solution proposed by Harsanyi is to assume that a player’s type is a random draw from a
distribution that is common knowledge. This reduces a game of incomplete information
to a game of imperfect information. Such a game is commonly called a Bayesian Game.

2.4.2. Bayesian Games

Definition: Bayesian Game
A Bayesian game consists of the five following features.
• A finite set of players labeled i ∈ N = {1, . . . , n}.
• For each i ∈ N , a set of types Ti, with typical member ti ∈ Ti.
• For each i ∈ N , a mapping si : Ti → Ai from her types to her actions ai ∈ Ai. The

set of Bayesian strategies is Si = Ai × Ti.
• For each i ∈ N and ti ∈ Ti, there are beliefs, µ, with probability measure pi over
T−i, written

µ ≡ pi(t−i|ti).
• For each i ∈ N , there are payoffs that takes the form of a von Neumann–Morgenstern

utility function
ui : A× T → R

.
Anything with these five features can be written as a Bayesian game

Γ = 〈N, {Ti}i∈N , {Ai}i∈N , {pi}i∈N , {ui}i∈N 〉,

where action profiles and type profiles are respectively defined as

a ∈ A ≡
N∏
i=1

Ai and t ∈ T ≡
N∏
i=1

Ti.

It is straightforward to extend the notion of a Bayesian strategy to mixed strategies.
A strategy is then a mapping from a given player’s type space to the set of probability
distributions over their action space

si : Ti → ∆(Ai).

Definition: Bayesian–Nash Equilibrium
A Bayesian–Nash Equilibrium of a Bayesian game Γ is a combination of mutual best
replies, in terms of Bayesian strategies, and a strategy profile, consisting of a Bayesian
strategy for each player, from which no player has a profitable unilateral deviation2.

2 Equivalently, no player–type pair has a profitable deviation.
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Example: Bayesian Battle of the Sexes
Two students simultaneously decide whether to go to a pub or a cafe. Student 1 prefers
the cafe, while student 2 prefers the pub. Student 1 likes the second and wants to meet
up with her. But the feeling may not be mutual. If student 2 likes student 1, she wants
to meet. Otherwise, she prefers to avoid her. Suppose that student 2 likes student 1
with probability 1

2 and hates her with probability 12.
• The players are student 1 and two types of student 2; 2l and 2h.
• The actions of each player can choose are Cafe and Pub.
• The payoffs are given in the below matrices, where each occurs with probability 1

2 .

or

Note that player 2 knows which matrix applies, where as player 1 does not and assigns
probability 1

2 to each.

This game can be written as a Bayesian game.
• The players are N = {1, 2}.
• The types for player 1 are T1 = {1} and for player 2 t2 ∈ T2 = {l, h}.
• For each player–type the actions available are A1 = A2 = {Cafe,Pub}. A Bayesian

strategy for player i associates each one of her types ti ∈ Ti with an action ai ∈ Ai.
• The beliefs of the players are

p1(l|1) = p1(h|1) = 1
2

p2(1|h) = p2(1|h) = 1.

• The payoffs remain the same as described in the matrix above.
Notice that types are independent

p(t−i|ti) = p(t−i).

Players own types do not reveal information about their opponents’ types. This need
not be the case (e.g. global games). Notice that types are private

ui(a, t) = ui(a, ti).

A player’s payoffs depend upon only her own–type draws, and not directly upon the
draws of opponents’ types. The The Bayesian–Nash equilibrium strategy profiles are;

• Player 1 plays s1(1) = C and player 2 plays s2(t2), where s2(l) = C and s2(h) = P.

• Player 1 plays s1(1) = (1
3 ,

2
3) and player 2 plays s2(l) = P and s2(h) = (2

3 ,
1
3).

• Player 1 plays s1(1) = (2
3 ,

1
3) and player 2 plays s2(l) = (2

3 , 13) and s2(h) = P.
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Example: Another Noisy Battle of the Sexes
Consider the following variation of the Battle of the Sexes. Player 1 (row) does not know
what payoffs player 2 (column) receives from playing Pub. In fact, there is some ‘noise’
in player 2’s payoff, δ. Likewise player 1’s payoff to Cafe is perturbed by some ‘noise’,
ε, from the perspective of player 2. Suppose that δ, ε ∼ U [0, a], where a < 2. The payoff
matrix below illustrates this game.

A Bayesian strategy for player 2 maps each of her types, δ, to an action, either Cafe or
Pub. Consider if player 2 follows a ‘cut–off’ strategy such as to play Cafe if δ < δ and
play Pub if δ ≥ δ. This is a pure strategy. The probability that player 2 plays Cafe,

from player 1’s perspective, is δ
a . If player 2 uses this strategy, then player 2 should play

Cafe if

[4 + ε] δa + [1 + ε](1− δ
a) ≥ 3(1− δ

a)

ε ≥ 2− 6 δa .

Thus, player 1’s best reply to 2’s cut–off strategy is itself a cutoff strategy defined by

ε = 2− 6 δa .

If ε ≥ ε, then player 1 plays Cafe. If ε < ε, then player 1 plays Pub. Given this strategy,
an analogous argument yields

δ = 2− 6 εa .

This is a defining cut–off strategy for player 2, which is a best reply to a cut–off strategy
by 1. Solving for δ and ε results in

δ = ε =
2a

6 + a
.

Thus, there is a Bayesian–Nash equilibrium in cut–off strategies where player 1 plays
Cafe if

ε ≥ 2a

6 + a
,

and Pub otherwise, and player 2 plays Pub if

δ ≥ 2a

6 + a
,

and Cafe otherwise.
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2.4.3. Purification

Definition: Purification
The probability distributions over strategies induced by the pure–strategy (Bayesian–
Nash) equilibria of the perturbed game converge to the distribution of the (mixed Nash)
equilibrium of the unperturbed game. This is Harsanyian purification.

The statement can be made precise, but the idea is simple.

Example: Purifying Bayesian Nash Equilibria in the Battle of the Sexes
Recall the perfect–information battle–of–the–sexes payoffs with ε = δ = 0.

Recall that the mixed Nash equilibrium involves player 1 playing Cafe with probability
2
3 and Pub with probability 1

3 , and player 2 playing Cafe with probability 1
3 and Pub

with probability 2
3 . Notice that the probability with which player 1 plays Cafe in the

Bayesian game is

Pr

[
ε ≥ 2a

6 + a

]
= 1− 2

6 + a
.

As a→ 0, then

1− 2

6 + a
→ 2

3
.

Thus, the distribution of types collapses to a point. The pure–strategy Bayesian–Nash
equilibrium resembles the mixed-strategy Nash equilibrium of the unperturbed game.
This process is called purification.

Notice there are other Bayesian-Nash equilibria of the perturbed game:

• Player 1 plays Cafe for all ε, and player 2 plays Cafe for all δ.

• Player 1 plays Pub for all ε, and player 2 plays Pub for all δ.
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2.4.4. A First–Price Sealed Bid Auction

Two players simultaneously and independently submit sealed bids to an auctioneer who
awards the object for sale to the highest bidder. The player who wins must pay the
amount that she bid. In the event of a tie, the object is allocated to one player selected
at random (with probability 1

2), who must then pay her bid. Each player’s valuation of
the object vi is an independent draw from U(0, 1). Player 1 observes v1, but not v2, and
vice versa.
• The players and i ∈ {1, 2}.
• The strategies are bi(vi) for each player, i, type, vi, and bid, bi.
• The payoff to player i of type vi is

ui(b, vi) =


0 if bi < bj ,
vi−bi

2 if bi = bj ,

vi − bi if bi > bj .

Suppose that player 2 uses a linear bidding strategy

b2 = α+ βv2.

Then player 1 wins if
b1 > b2 = α+ βv2.

This occurs with probability

Pr[b1 > b2] = Pr[b1 > α+ βv2]

Pr[b1 > b2] = Pr[v2 <
b1−α
β ]

Pr[b1 > b2] = F [ b1−αβ ]

Pr[b1 > b2] =
b1 − α
β

,

as long as α ≤ b1 ≤ α+β. Then player 1 receives a payoff of v1− b1 if she wins and zero
otherwise. Hence her expected payoff is

u1(b, v1) = (v1 − b1)
b1 − α
β

.

You can find player 1’s optimal bid, b1, for each one of her types, v1, given player
2’s linear bidding strategy. The first–order condition of player 1’s utility maximization
problem is

∂u1

∂b1
=

1

β
(v1 − b1)− b1 − α

β
= 0.

This implies that

2b1
β

=
v1 + α

β

b1 =
v1 + α

2
b1 = 1

2α+ 1
2v1.
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Hence, player 1’s best reply to 2’s linear strategy is itself a linear strategy.

You can rewrite

b1 = 1
2α+ 1

2v1

b1 ≡ A+Bv1,

where A = α
2 and B = 1

2 .

You can also find player 2’s best reply to player 1’s linear strategy

b2 = α
2 + 1

2v2

b2 ≡ A+Bv2,

For the linear bidding strategies to be mutual best replies, and thus constitute a Bayesian–
Nash equilibrium, it must be that

α = A = α
2 ⇔ α = 0

β ≡ B = 1
2 .

Therefore, the unique BNE in linear bidding strategies is

b∗1(v1) = 1
2v1,

b∗2(v2) = 1
2v2.

Note that players bid half their valuation in equilibrium. Furthermore, these strategies
meet the requirements that a ≤ bi ≤ α+ β for both players, i = 1, 2.
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2.4.5. A Double Auction

A buyer has a valuation for a good vb ∼ U(0, 1). A seller has valuation vs ∼ U(0, 1).
They each observe their own valuations, but not the other player’s. They must each
announce a price, pb and ps, simultaneously. If pb ≥ ps a sale takes place at a price half
way between pb+ps

2 . Otherwise there is no sale.
• The players are the buyer and the seller, N = {b, s}.
• The strategies are pi(vi) for each player, i, type, vi, and price pi.
• The players both receive a payoff of 0 if pb < ps, and otherwise

Ub(p, vb) = vb −
pb + ps

2
and Us(p, vs) =

pb + ps
2

− vs.

Suppose that the seller chooses

ps(vs) = α+ βvs.

Then the buyer’s expected payoff from an offer of pb is

Ub(p, vb) = Pr[pb ≥ ps]
(
vb −

pb + E[ps|pb ≥ ps]
2

)
.

Note that
ps = α+ βvs ∼ U(α, α+ β).

In the figure below on the left, the probability that pb ≥ α+βvs is the shaded area, that
is, pb−α

β . The expected value of α+ βvs, given that pb ≥ α+ βvs is α+pb
2 .

Hence,

Ub(p, vb) =
pb − α
β

[
vb −

1

2

(
pb +

α+ pb
2

)]
.

Differentiating this utility function with respect to pb, and then setting it to zero yields

1

β

[
vb −

1

2

(
pb +

α+ pb
2

)]
=

3

4

(
pb − α
β

pb(vb) = 1
3α+ 2

3vb.

The seller’s problem can be set up in an analogous way. Suppose that

pb = γ + δvb.

Then

Us(p, vs) = Pr[pb ≥ ps]
(
ps + E[pb|pb ≥ ps]

2
− vs

)
.
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In the figure above on the right, the probability term is the shaded area, given by
γ+δ−ps

δ . The conditional expectation term is ps+γ+δ
2 . Differentiating this utility function

with respect to ps, and the setting it to zero yields

1

δ

[
1

2

(
ps +

ps + γ + δ

2

)
− vs

]
=

3

4

(
γ + δ − ps

δ

)
ps(vs) = 1

3(γ + δ) + 2
3vs.

For these two strategies to be a Bayesian–Nash equilibrium, then

α = 1
3(γ + δ),

β = 2
3 ,

γ = 1
3α,

δ = 2
3 .

Hence,

α = 1
4 ,

γ = 1
12 .

So, the linear Bayesian–Nash equilibrium strategies are

pb(vb) = 1
12 + 2

3vb,

ps(vs) = 1
4 + 2

3vs.

Trade occurs whenever pb ≥ ps or, from evaluating equilibrium strategies, whenever
vb ≥ 1

4 + vs. However, there is a mutually beneficial trading opportunity whenever
vb ≥ vs. Therefore, the Double Auction does not ensure a Pareto efficient outcome.
Some mutually beneficial trades do not take place.

In the figure above, in area A there is efficient trade. In area B there is efficient lack of
trade where the seller values the good more than the buyer. In the shaded area there is
an inefficient lack of trade. There are many other equilibria, but none that are efficient.
In particular whenever vs ≤ vb < 1

4 + v2, then there is an inefficient lack of trade.
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2.4.6. Extensive–Form Games
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2.5. Screening and Signaling

You can see that information asymmetry can lead to inefficiency–the adverse selection
problem. In order to mitigate this inefficiency,‘envied’ types (e.g. high ability and low–
risk) need to be distinguished from other types who wish to mimic them. This could be
done through signaling, screening, or cheap–talk.

Definition: Screening
Screening is where the uninformed party moves first, offering a menu of contracts that
separates types.

Definition: Signaling
Signaling is where the informed party moves first, taking an action with a type–dependent
cost.

2.5.1. Screening

Example: Screening in Competitive Insurance Markets
Assume that there are risk–neutral competitive insurers. All individuals participating
in the market have the same initial wealth, y, and potential loss, K. The probability
of loss, π, is privately known. Two types, high and low–risk, πH > πL. The proportion
of low–risk type L individuals is l. An insurance policy is a contingent consumption
bundle, (ync, yc). First, insurance companies simultaneously offer policies. Then each
individual chooses a policy.

In subgame perfect equilibrium, given her privately–known risk p, each individual chooses
the best policy offered by the insurers. Anticipating this, as well as the policies offered
by the other insurers, each insurer maximizes its expected profit. The implications are
that competition forces insurers to offer actuarially fair contracts (i.e. insurers break
even in expectation) and at most two contracts are offered.

An equilibrium of this model can be separating or pooling. A pooling equilibrium has
the firms offering one policy that is accepted by both types. In a pooling equilibrium,
the price of coverage q is

πq = [λπL + (1− λ)πH ]q.

A separating equilibrium has the firms offering distinct price contracts; one is accepted
by low–risk types, the other by high–risk types. The price of coverage chosen by the
high–risk and low–risk types are respectively

PH(qH) = πHqH and PL(qL) = πLqL.

The figure below depicts zero–profit lines for insuring H–types, L–types, and all types.
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Lemma: The Spence–Mirrlees (Single-Crossing) Condition
For any point in the (ync, yc) space, the indifference curve of the low–risk type is steeper
than the indifference curve of the high–risk type running through that point.

Proof. The Expected utility of type i ∈ {L,H} at (ync, yc) is

Ui = (1− πi)u(ync) + πiu(yc).

The slope of the indifference curve, by total differentiation, is

dyc
dync

= −1− πi
πi

u′(ync)

u′(yc)
.

This is greater in absolute value for type L than type H at a given point, (ync, yc),
because

1− πL
πL

>
1− πH
πH

.

�

In the figure below, through the same point, the L-type’s indifference curve is steeper.

Claim: There is no pooling equilibrium in this market.

Proof. An actuarially fair pooling contract would lie on the middle budget line, as you
can see in the previous figure. Through this point, the indifference curve of the L–type
is steeper than that of the H–type, by the Spence–Mirrlees Lemma. Hence an insurance
company would have a profitable deviation to a contract in area C—only L–types would
choose it over the pooling contract, meaning that it would generate positive expected
profit. Hence the putative pooling equilibrium is not an equilibrium. �

In a separating equilibrium two contracts are offered; coverage qL with price PL intended
for the L–types, and coverage qH with price PH intended for the H–types. The contracts
must be actuarially fair and the firms will break even

PL = πLqL,

PH = πHqH .

The contracts must also be incentive compatible.
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Definition: Incentive Compatible
A menu is incentive compatible if each individual buys the contract meant for them.

Here, each individual will buy the insurance meant for them as a result of firm screening.
The incentive compatibility constraint for the high–risk type is

ICH : (1−πH)u(y−PH)+πHu(y−PH−K+qH) ≥ (1−πH)u(y−PL)+πHu(y−PL−K+qL).

The incentive compatibility constraint for the low–risk type is:

ICL : (1−πL)u(y−PL)+πLu(y−PL−K+qL) ≥ (1−πL)u(y−PH)+πLu(y−PH−K+qH).

Note that Ph = πHqH and PL = πLqL in both inequalities.

Claim: In a separating equilibrium, the high–risk type gets full coverage, qH = K.

Proof. Suppose this is not the case, qh 6= K. Then, a rival insurance company could
deviate and offer a contract aimed at high–risk types so that more insurance is offered
at a slight profit. All high–risk types prefer this contract and it makes money. If low–
risk types also choose this contract then the deviating firm makes even more money.
Therefore, qH 6= K cannot be part of a separating equilibrium. �

Low–risk types are offered the best contract for them that is actuarially fair, with
PL = πLqL, and would not be chosen by high-risk types. This occurs where ICH binds,
minimizing the distortion. Algebraically, qL is given by

u(y − πHK) = (1− πH)u(y − πLqL) + πHu(y − πLqL −K + qL).

The left–hand side is the H–type’s utility from the contract aimed at her; the right-hand
side is its utility from pretending to be an L–type. The other incentive compatibility
constraint, ICL, automatically holds, because of the fact that the L–type’s indifference
curves are steeper. The figure below on the left depicts the separating equilibrium.

The results are; to prevent the high–risk types taking the low–risk insurance contract,
it must be made just unattractive enough. Any reduction in cover hurts the high–risk
types more than it hurts the low–risk types. The high–risk types are willing to pay more
to avoid a reduction in cover, which is the basis for the screening. In the end, the con-
sumption of low–risk types is distorted from the first best outcome ( i.e. full coverage).
The presence of high–risk types imposes an externality on the low–risk types, making
it prohibitively costly for them to obtain full insurance. The figure above on the right
depicts that the competitive screening model may have no equilibrium. Non–existence
occurs when the proportion of low–risk types is too high3.

3 If an applied model does not have an equilibrium, then the model needs to be altered. In this case,
it is fairly easy. Assume that firms can withdraw unprofitable contracts. With this slight modification
the screening model has a unique equilibrium that is separating. In general, equilibrium non–existence
can be a major problem.
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Example: Monopolistic Screening in the Labor Market
A monopsonist makes a take–it–or–leave–it offer of a contract to a worker. A worker’s
type, here ability, which is private information, is denoted by θ ∈ {θL, θH}. The proba-
bility of type θH is λ. There is a contractible action used for screening, e ≥ 0. A contract
is a pair, (w, e), composed of a wage, w and task e. When working, a type θ ∈ {θL, θH}
worker’s utility is

U(w, e) = w − 1

2

e2

θ
.

Hence a low ability type incurs a higher marginal disutility from work. For simplicity,
suppose that the worker’s outside option is worth r = 0. So, she will work if

U(w, e) = w − 1

2

e2

θ
≥ 0.

If employed with e ≥ 0, a type θ ∈ {θL, θH} worker’s marginal product is

MP(θ) = θ + αe,

and the employer’s profit is
π = θ + αe− w,

The individual rationality (participation) constraints of the two possible types of workers
are the respective indifference curves, where

w =
1

2

e2

θ
.

Below is a figure that depicts the two types of workers’ productivity and indifference
curves.

Note that in the monopsony first–best case, the firm chooses combinations, (w, e), such
that the participation constraints of both types bind. Rather than firms making zero
profit, as in the competitive case, workers get utility r = 0.

In the monopsony first–best case, the firsm sets

w =
1

2

e2

θ
,

for θ ∈ {θL, θH}. This means that the firm’s profit when hiring a θ type for task e is

π = θ + αe− 1

2

e2

θ
.
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The first–best task, e, maximizes profit and is such that the marginal disutility of e
equals the marginal productivity of e. It follows that

de2

de2θ
=

d(θ + αe)

de
e∗(θ) = αθ.

The first–best wage for a type θ worker is

w(θ) =
1

2

e∗(θ)2

θ

w(θ) =
1

2
α2θ.

Therefore, e∗L < e∗H and w∗L < w∗H . Furthermore, the Spence–Mirrlees single-crossing
condition holds, that is, through any given point, the indifference curve the low–ability
type θL is steeper. The high–ability type envies the deal of the low–ability type. Note
that the opposite holds in the competitive screening case, where market structure can
fundamentally alter the effects of asymmetric information and the nature of adverse
selection.

If the worker’s type is not observable to the wage–setting employer, the employer solves
the following problem

max
eL,eH ,wL,wH≥0

π = λ(θH + αeH − wH) + (1− λ)(θL + αeL − wL),

s. t. IRL : wL −
1

2

e2
L

θL
≥ 0,

s. t. IRH : wH −
1

2

e2
H

θH
≥ 0,

s. t. ICL : wL −
1

2

e2
L

θL
≥ wH −

1

2

e2
H

θL
,

s. t. ICH : wH −
1

2

e2
H

θH
≥ wL −

1

2

e2
L

θH
.

The first two constraints, IRL and IRH , are the participation constraints, and the second
two constraints, ICL and ICH , are incentive compatibility constraints. If IRL holds, then

wL −
1

2

e2
L

θH
> 0,

because θH > θL. Hence, by ICH , then

wH −
1

2

e2
H

θH
> 0.

The participation constraints for the high–ability type, IRH , automatically holds, i.e. it
is slack.
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Note that it cannot be that both IRH and IRL hold, because then the employer could
decrease both wH and wL by ε > 0, without violating any of the constraints, while
increasing the employer’s payoff. Therefore IRL holds with equality, that is, the low
type’s participation constraint is binding. Furthermore, in the solution ICH is binding,
ICL is slack, and eL < e∗L.

Proof. If L type’s offer is at eL (red dot) then H type’s offer is in the shaded area, say
at the blue dot. This implies that ICL is slack (red dot puts L type on higher IC). If
eL > e∗L, then the employer increases profit by moving eL towards e∗L. �

Thus, in the solution e < e∗L, eH = e∗H , and the IRL and ICH are binding.

Properties:

• There is full rent extraction at the bottom: IRL is binding (i.e. the low–ability
type gets her reservation wage).

• All types but the lowest type strictly prefer the outcome of the second–best to that
of the first–best. (Implied here by slack ICH .)

• There is no distortion at the top: eH = e∗H .

• The distortion eL < e∗L is due to the non–linearity of the indifference curves. This
implies that there is an interior solution where H types enjoy some rents and L
types face some distortion in eL.
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2.5.2. Signaling

Adverse selection can be resolved by the informed party moving first to signal her type.
In particular, in a separating equilibrium, the ‘good’ type takes an action that distin-
guishes herself from the ‘bad’ type. The uninformed party then updates her beliefs
regarding her opponent’s type. For the signal to be credible it must be too costly for
the bad type to send; of course, to be sent at all it must be sufficiently affordable for the
good type.

Reading: Spence (1973), Veblen (1899), Zahavi (1975).

Example: Signaling in the Labor Market Spence (1973)
Consider a worker attempting to signal her ability to a competitive labor market. Nature
picks the worker’s type (productivity)

θ ∈ {θL, θH},

where Pr(θ = θH) = λ. The worker observes θ and chooses her education level e ≥ 0.
The worker’s payoff is

u(w, e) = w − e

θ
,

when working (the Spence–Mirrlees condition holds). The worker’s outside option is
r(θ) = 0.

Figure II.1: Worker’s Productivity and Indifference Curves

Note: Education, e, is not productive. The first–best (full information) outcome is e = 0 for both types
and wage θH for H types and θL for L types.

The firm’s payoff is

π(w) =

{
θ − w if it employs the worker,

0 if it does not.

The worker’s strategy is e(θ) (i.e. a level of education for each θ ∈ {θL, θH}). The firm’s
strategy is w(e) (i.e. a wage for each level of education e ≥ 0. The wage offered by firms
depends on their belief about the worker’s type given the observed education level, e.
Denote the firm’s belief for each education level, e ≥ 0, as

µ(e) ≡ Pr[θ = θH |e].

ii - 38



A Perfect Bayesian Equilibrium (PBE) in this game consists of a strategy for the worker,
e(θ), a strategy for each firm, w(e), and each firm’s beliefs, µ(e). A PBE is a triplet
(e∗, w∗, µ∗) such that the follow conditions hold.
• Following any e ≥ 0, each firm’s reaction, w∗(e), is optimal given its beliefs and

the other firms’ anticipated reactions.
• Type θ workers pick e∗(θ) optimally given their type and the firms’ anticipated

reactions.
• A firm’s beliefs, µ∗(e), are consistent with the worker’s equilibrium strategy and

the prior distribution of θ.

Consistent beliefs are such that the following conditions hold.
• After an action that the worker plays in equilibrium, Bayes’ rule is used to compute

µ∗(e) = Pr(θ = θH |e∗(θ) = e).

• If the worker picks an out–of–equilibrium action, then the firms are free to believe
anything about the worker’s type.

There are pooling equilibria such that the following conditions hold.
• Both worker types choose the same e∗ ∈ [0, λ(θH − θL)θL].
• Beliefs are µ∗(e∗) = λ and µ∗(e) = 0 for all e 6= e∗.
• Firms set w∗(e∗) = λθH + (1− λ)θL and w∗(e) = θL otherwise.

In the pooling equilibrium, you can check that the following conditions are true.
• Firms’ beliefs are consistent with the equilibrium.
• Wage equals expected productivity, as dictated by perfect competition.
• Type θ plays e∗ if and only if for all e

λθH + (1− λ)θL −
e∗

θ
≥ θL −

e

θ

λ(θH − θL)θ ≥ e∗ − e.

This holds for all e ≥ 0 for both types if and only if

e∗ ≤ λ(θH − θL)θL.

Figure II.2: Example of a Pooling Equilibrium

Note: 0 ≤ e∗ ≤ λ(θH − θL)θL.
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Next, there are separating equilibria such that the following conditions hold.
• e∗(θL) = 0 and e∗(θH) = eH ∈ [(θH − θL)θL, (θH − θL)θH ].
• Beliefs are µ∗(eH) = 1 and µ∗(e) = 0 for all e 6= eH .
• Firms set w∗(eH) = θH and w∗(e) = θL for all e 6= eH .

You can check that the following conditions hold in equilibrium.
• Firms’ beliefs are consistent and reactions are optimal given beliefs.
• Type θL prefers e = 0 to eH if and only if

θL ≥ θH −
eH
θL

eH ≥ (θH − θL)θL.

• Type θH prefers e = eH to 0 if and only if

θH −
eH
θH
≥ θL

eH ≤ (θH − θL)θH .

Also not that
(θH − θL)θL ≤ eH ≤ (θH − θL)θH .

An alternative equilibrium selection device involves ruling out Pareto inefficient equilib-
ria: equilibria in which at least one player can be made better off while all other players
are left no worse off. Clearly the minimal–cost separating equilibrium Pareto dominates
all other separating equilibria. However, the pooling equilibrium in which e = 0 Pareto–
dominates the minimal–cost separating equilibrium if the proportion of High types λ is
sufficiently high. This is because high types waste resources distinguishing themselves
without a large increase in their wage (because they are pooled mainly with other high
types).

Separating Equilibrium Minimal–Cost Separating Equilibrium
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Is there a suitable equilibrium refinement that selects this equilibrium (otherwise known
as the Riley Equilibrium)? Perform an equilibrium dominance test, that is, following a
deviation by the worker, put zero probability on types whose equilibrium payoffs exceed
any payoff they can get from deviation given a competitive wage setting. Recall that the
Intuitive Criterion rules out every PBE that fails the equilibrium dominance test. Here,
the intuitive criterion places certain restrictions on the function w∗(e), by constraining
out–of–equilibrium beliefs.

Theorem: Cho and Kreps 1987
In any Spencian signaling game with two sender types the Intuitive Criterion selects an
equilibrium with the Riley outcome.

This is true more generally as long as types are ordered (high and low), payoffs satisfy
single crossing, and there are only two types. When there are more than two types,
then stronger refinements select the minimal–cost separating equilibrium outcome. The
Intuitive Criterion is used for equilibrium selection in many other games of incomplete
information.

Ruling Out
Pooling Equilibria

Ruling Out
Non–Minimal Separating Equilibria

The key points to take away from Spencian Signaling are as follows. The structure; a
sender wants the receiver to think that she is a high type, θH , and there is single–crossing,
that is, the marginal cost of action is everywhere lower for θH . The Perfect Bayesian
equilibrium and Intuitive Criterion, with two types, yields a minimal–cost separating
outcome. This is the same outcome as under competitive screening. Does the signal
have to be costly? Does education have to be a pure social waste? Maybe, but not
necessarily, as signaling also works if education is more beneficial for the high types, in
which case the high type overinvests in education relative to the first–best outcome.

ii - 41



2.6. Strategic Communication and Moral Hazard

2.6.1. Strategic Communication

We have seen that screening and signaling are two possible solutions to the adverse
selection problem. However, could the informed party not simply disclose the hidden
information? This is of course a matter of credibility. Under what conditions can an
informed party credibly disclose information?

Definition: Verifiable Communication Game
In verifiable communication games, the informed party cannot report false information,
but can suppress information.

Definition: Cheap Talk
Cheap–Talk is where the informed party can send a costless message regarding her type.
The informed party can disclose anything she desires, and disclosure is unverifiable.

2.6.2. Verifiable Disclosure

Consider communication between an agent A and a principal P .
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Quarter III
“Happiness is fugitive; dissatisfaction and boredom are real.”

– Jack Vance, Emphyrio

This part of the microeconomic sequence starts by revising basic models of individual
choice and Pareto efficiency and their extensions under uncertainty. Next, economic
mechanisms—auctions, bargaining, voting, and matching—that can be used to allocate
any kind of goods among any number of agents are analyzed. In contrast with the
Walrasian general equilibrium, we find persistent conflicts between individual rationality
and social efficiency. Finally, we discuss the more abstract part of social choice and
mechanism design that establish some general tradeoffs between individual incentives
and social efficiency.

3.1. Utility and Preferences

3.1.1. Preferences

The way we will model individual choice starts with an arbitrary set X and a binary
relation � on X. The set X consists of all alternatives (payoffs, outcomes, options, etc.)
that may become feasible in relevant observations.

Definition: Weak preference is x � y. This says x is weakly preferred to y when the
decision maker is willing to choose x when only two options x and y are feasible.

Definition: Strict preference is x � y ⇔ x � y and not y � x.

Definition: Indifference is x ∼ y ⇔ x � y and y � x.

Observing preferences can be problematic.
(i) The feasible set may be hard to control or choice avoidance can be an issue.
(ii) Indifference between x and y requires more than just one observation.
(iii) The required number of observations is at least X ∗ (X − 1)/2.
(iv) Experimental observations can be costly when the payoffs are high.
(v) Path Dependence: Previous observations can interfere with the next ones.4

The basic properties of preferences � are
• reflexive if x � x for all x ∈ X.
• complete if ∀ x, y ∈ X either x � y, or y � x, or both.
• transitive5 if ∀ x, y, z ∈ X, then x � y � z implies x � z.
• antisymmetric if ∀ x, y ∈ X, if x ∼ y, then x = y.

Definition: Weak order preferences are complete and transitive.

Definition: Linear order preferences are complete, transitive, and antisymmetric.

4 The Becker–de Groot–Marschak (BDM) elicitation method can help avoid path dependence. The
subject formulates a bid. The bid is compared to a random price. If the subject’s bid is greater than
the price, she pays the price and receives the item. If the subject’s bid is lower than the price, she pays
nothing and receives nothing. This method is equivalent to a Vickrey auction.

5 The Condorcet Paradox occurs when x � y � z and y � z � x and z � x � y. The voting paradox
is a situation in which collective preferences can be cyclic, even if the preferences of individual voters are
not cyclic. The choice of winner by a voting mechanism could be influenced by whether or not a losing
candidate is available to be voted for, violating the axiom of independence of irrelevant alternatives.
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3.1.2. Utility Representations

If X is finite, and � is complete and transitive, then there is a utility representation U .
Preferences are represented by U : X → R if for all x, y ∈ X, then x � y ⇔ U(x) ≥ U(y).
• If U represents �, then another function U ′ = f ◦ U for some strictly increasing

one–variable function f : D → R with a domain D that contains the range U(X)
of the utility U .
• U is unique up to a strictly monotonic transformation of U .
• Utility representation implies that � is complete and transitive.
• The converse is true if X is finite, but not tue if X is infinite6.

3.1.3. Continuity

Let � be a preference on X ⊂ Rn.

Definition: Call � upper semi–continuous if the upper contour sets {y ∈ X : y � x}
are closed for all x ∈ X.

Definition: Call � lower semi–continuous if the lower contour sets {y ∈ X : y � x} are
closed for all x ∈ X.

Definition: Call � continuous if all upper and lower contour sets are closed.

Theorem: Preference � is complete, transitive, and (upper, lower) continuous if and
only if it has an (upper, lower) continuous utility representation.

6 If X is infinite, there may not be a utility representation. Consider lexicographic preferences where
an agent prefers any amount of one good (X) to any amount of another (Y). These preferences cannot
be represented with a utility function.

iii - 2

https://en.wikipedia.org/wiki/Lexicographic_preferences


3.2. Expected Utility and Pareto Efficiency

3.2.1. The Quasi–linear utility model

Let X = Z × R = {x = (z,m) : z ∈ Z,m ∈ R}.

Definition: Quasi–linear utility is U(z,m) = v(z) +m.

The key assumptions are:
• Completeness and transitivity of preference (any utility model).
• The presence of money separability

(z,m) � (z′,m′)⇒ (z,m+ a) � (z′,m′ + a)

for all z, z′, m, m′, and a7.

Conversely, these conditions together with appropriate continuity imply the quasi–linear
utility representation.

3.2.2. Expected Value and Expected Utility

Let X = L(Z) be the set of all lotteries I over Z: probability distributions that deliver
payoffs z1, . . . , zn ∈ Z with probabilities p1, . . . , pn so that pi ≥ 0 and

∑
i pi = 1. If Z is

an interval of the real line, then lotteries have monetary payoffs.

Definition: The Expected value models is

U(i) =

I∑
i=1

pizi.

Definition: The Expected utility models is

U(I) =

I∑
i=1

piu(zi),

where u : Z → R is called a Bernoulli utility index.

In the expected value model, payoffs must be monetary. In the expected utility model,
payoffs can be arbitrary (health, social status, etc.).

3.2.3. Risk Attitudes

Let X = L(Z) where Z ⊂ R, and
∑

i pizi be a sure payment.

Definition: Preference � is risk averse if for all I, I �
∑

i pizi.

Definition: Preference � is risk loving if for all I, I �
∑

i pizi.

Definition: Preference � is risk neutral if for all I, I ∼
∑

i pizi.

Risk attitudes require monetary payoffs, but can be defined without assuming a partic-
ular utility representation. Within the expected utility model;
• Risk aversion is equivalent to the concavity of u⇔ u′ is decreasing ⇔ u′′ ≤ 0.
• Risk loving is equivalent to the convexity of u⇔ u′ is increasing ⇔ u′′ ≥ 0.
• Risk neutrality is equivalent to the linearity of u.

7 Equivalently, WTP (z) = WTA(z) where the willingness–to–pay and the willingness–to–accept are
measured relative to some status quo (z∗,m∗).
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3.2.4. Constant Absolute Risk Aversion

The constant absolute risk aversion (CARA) parametric model has Bernoulli utility
index

u(z) = −e−λz,

where λ > 0. If λ = 0, then u(z) = z.
• Utility u is defined for all z.
• CARA satisfies wealth invariance: I � I ′ implies I ⊕ a � I ′ ⊕ a, where all payoffs

are modified by a ∈ R.
The downside is that risk aversion is too strong over large intervals. For further reading,
see Rabin, Risk Aversion and Expected Utility Theory: A Calibration Theorem. 2000.

3.2.5. Expected Utility and Independence

Besides completeness and transitivity, expected utility model satisfies independence.

Definition: Independence is

I � I ′ ⇒ αI + (1− α)I ′′ � αI ′ + (1− α)I ′′.

The mixtures are probabilistic here, and the axiom that captures the separability princi-
ple across mutually exclusive cases that occur with probability α and 1−α respectively.
In the first case, the outcomes are determined by I and I ′ respectively. In the second
case, the outcomes are determined by I ′′.

Von Neumann and Morgenstern (1944) showed that completeness, transitivity, continu-
ity, and independence are necessary and sufficient for the expected utility representation.

The Allais Paradoxes, such as the common ratio effect, contradicts independence.

3.2.6. Uniqueness of Utility Representations

The general utility function U can be distorted by any strictly increasing function f .
The composition f(U) = f ◦ U represents the same preference �. If we observe �, we
cannot infer function u.
• In the quasi–linear utility model, money serves as the measuring device, and the

index v(z) is unique up to adding a constant

v(z) + β for β ∈ R.

• In the expected utility model, probabilities serve as the measuring device, and the
index u(z) is unique up to a positive linear transformation

αu(z) + β for α > 0 and β ∈ R.
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3.3. The Nash Bargaining Solution and Walrasian Equilibria

3.3.1. The Nash Bargaining Solution

Let I be a population of agents. Take any utility possiblity set U ⊂ R′ such that
• U is convex and closed. For example, U can be the set of all utility vectors

(U1(x), . . . , UI(x)) produced by expected utility functions Ui over lotteries x.
• (0, . . . , 0) ∈ U is a threat (status quo) point that describes what the agents obtain.
• U ∩ R′++ is bounded and not empty.

The Nash Bargaining solution is

N(U) = argmax
(u1,...,uI)∈U∩R++

[log u1 + · · ·+ log uI ].

The Nash Bargaining solution is the only such function f that is defined over all suitable
U and satisfies
• Pareto efficiency: f(U) ∈ U is Pareto efficient in U .
• Symmetry: if ∆ = {(u1, . . . , uI) ∈ R++ :

∑
i ui ≤ 1}, then f(∆) = (1

I , . . . ,
1
I ).

• Rescaling Invariance: if

V = {(α1u1, . . . , αnun) : (u1, . . . , un) ∈ U},

then f(V) = (α1f1(U), . . . , αnfn(U)).
• Independence of Irrelevant Alternatives: if f(U) ∈ V ⊂ U , then f(V) = f(U).

If symmetry is dropped, then Nash is generalized by

G(U) = argmax
(u1,...,uI)∈U∩R++

[β1 log u1 + · · ·+ βI log uI ],

for some βi > 0 and
∑

i βi = 1.

Example: Assignment Problems
A valuable item needs to be assigned to one of I agents with consumption values Vi >
0 and quasi–linear utilities. Money can be transferred. The utility possiblity set is
(u1, . . . , uI) :

∑
i ui = maxi Vi. The Nash bargaining solution assigns the item to the

agent with the highest consumption value Vm and makes this agent pay Vm
I to each of

the other agents.

Example: Coordination Problems
I agents need to coordinate on one of the activities (a1, . . . , ak) with utility vectors
v1, . . . , vk ∈ R′++ respectively. If they do not coordinate, then they receive (0, . . . , 0).
Coordination can be randomized. The set U is the convex hull of v1, . . . , vk, 0. The Nash
bargaining solution can be found by checking all the edges (faces) of the Pareto frontier.

The Nash Bargaining solution serves as a theoretical benchmark for more practical as-
signment mechanisms, and is a part of other models (e.g. it can be used to assign an
outcome after the utility possibility set has be determined by other means). The main
problem, which will be shared by other mechanisms as well, is how does one observe U?

Example: In the two–agent assignment problem, the agent with the higher value V
will have incentives to report a lower value in order to pay less to the other individual.
How can you induce truth–telling?
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3.3.2. Walrasian Equilibrium

Walrasian (Competitive) Equilibrium is another theoretical solution for pure exchange
economies with
• L infinitely divisible goods consumed in non–negative consumption bundles

(x1, . . . , xL) ∈ RL+.

• Finitely or infinitely many agents with preferences�i and utility functions ui(x1i, . . . , xLi).
• Initial endowment vectors ωi ∈ RL+.

Definition: Say that the allocation x1, . . . , xI ∈ RL is feasible if
∑

i xi =
∑

i ωi.

If I = 2, then each feasible allocation x1, x2 ∈ RL+ corresponds to a point in the Edge-
worth box.

A Walrasian equilibrium consists of an allocation xi = (x1i . . . , xLi) ∈ RL+ for all i =
1, . . . , I and a price vector p ∈ RL++ such that

Definition: Each xi is affordable if p · xi ≤ p · ωi.

Definition: Each xi is individually optimal if xi �i yi for all yi such that p · yi ≤ p · ωi.

Definition: The allocation x1, . . . , xI ∈ RL+ is feasible if
∑

i xi =
∑

i ωi.

Finding a Walrasian equilibria can be a hard computational problem. Note that the
Nash Bargaining solution can be also defined for the threat point given by the initial
endowment vectors ui and the utility possibility set given by concave utility functions
ui or through randomization.

3.3.3. Cobb–Douglas Utility Function

If all ui have Cobb–Douglas form utility

ui(x1i, . . . , xLi) = αi log x1i + · · ·+ αLi log xLi,

for some αli > 0 such that
∑

l αli = 1 then
• The equilibrium allocation is unique.
• The equilibrium price vector is unique if p1 = 1.
• The equilibrium can be found by solving a system of linear equations.

Example: Cobb–Douglas utility functions
The problem is to

maxui(x1i, . . . , xLi) s.t. p · xi ≤M.

There is a unique solution

xli =
αliMi

pl
for all l = 1, . . . , L and i = 1, . . . , I.

Thus
I∑
i=1

αli(P · wi)
pl

“AggregateDemand

=
I∑
i=1

wli

“AggregateSupply′′

Problem: Cobb–Douglas utility functions
Given I = L = 2 and w1 = w2 = (1, 1) and preferences

what is the Walrasian equilibrium?

Solution:
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3.4. Walrasian Equilibria and its Extensions

3.4.1. Pareto Efficiency in Walrasian Equilibria

Say that preference �i is locally non–satiated if for any x ∈ RL+ and ε > 0, there is
y ∈ RL+ such that ‖y−x‖ < ε and y �i x. Any utility function that is strictly monotonic
in at least one component must be locally non–satiated.

Theorem: The First Welfare Theorem
If all preferences are locally non–satiated, then any Walrasian equilibrium allocation
must be Pareto efficient.

Walrasian equilibria are not the only reasonable ways to achieve Pareto efficiency in
pure exchange economies with full information about preferences and initial endow-
ments. Nash bargaining solution works as well. Both WE and NBS are susceptible to
manipulation: agents have incentives to lie about their preferences (e.g. parameters of
their Cobb–Douglas utilities) to get a better allocation by the mechanism rules.

3.4.2. Pareto Efficiency and Walrasian Equilibria

If all ui are differentiable, then one can write F.O.C. for interior Pareto efficiency and
WE allocations.

Definition: Let

MRSkli(xi) =
∂ui(x1i, . . . , xLi)/∂xki
∂ui(x1i, . . . , xLi)/∂xli

be the marginal rate of substitution for agent i between goods k and l. It is how many
small units of good l she is willing to sacrifice for one small unit of k.

Allocation x1, . . . , xI must be feasible (
∑

i xi =
∑

i ωi) and interior (xi ∈ RI+ for all i).
Pareto efficiency at an interior feasible allocation x1, . . . , xI implies that

MRSkli = MRSklj for all k, l, i, j.

Walrasian equilibrium implies

MRSkli = MRSklj =
pk
pl

and p · ωi = p · xi.

The ratio pk
pl

is the relative price—how many units of good l are required to buy one
unit of good k at market prices.

Problem: Pareto efficiency
Let u1(x) = x and u2(x) = −αx, where x ∈ [0, 1], α > 0. What are the Pareto efficient
outcomes?

Solution: Any x is a Pareto efficient outcome.

3.4.3. The Core

Any Walrasian equilibrium allocation satisfies a stronger form of Pareto Efficiency,
known as the core property. Take any non–empty coalition C ⊂ I. Say that this
coalition blocks a feasible allocation x1, . . . , xI if there are bundles {yc ∈ RL+ : c ∈ C}
such that
• yc �c xc for all c ∈ C and yb �b xb for some b ∈ C,
•
∑

c∈C yc =
∑

c∈C ωc.

Definition: Say that x1, . . . , xI has the core property if it is feasible and is not blocked
by any coalition C ⊂ I.
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If C = I, then x1, . . . , xI is not blocked by C if and only if it is Pareto optimal.

If C = {i}, then x1, . . . , xI is not blocked by C if and only if xi �i ωi. This is called
individual rationality.

The collection of all allocations with the core property is called the core of the pure
exchange economy. In the 2× 2 case, the core is called the contract curve.

Theorem: If all preferences are locally non–satiated, then any Walrasian equilibrium
allocation must be in the core.

Note that the core is defined without money, but typically has many possible allocations.

Example: Suppose that XA = (1, 1) and XB = (1, 1). The set of Pareto efficient
allocations is ... The core is ... The Walrasian equilibrium is....
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Figure III.1: The Corresponding Edgeworth Box

Note: Only type θH may gain from deviating to e′.
By the Intuitive Criterion µ(e′) = 1 and w(e′) = θH ,
which rules out the equilibrium. �

3.4.4. Walrasian Equilibrium in Large Economies

Assume that the population is I = [0, 1] so that no single individual i ∈ I has any effect
on the entire economy. Initial endowments and preferences are given as functions

ω(t) : [0, 1]→ RL and � (t).

A Walrasian equilibrium consists of an allocation x(t) : [0, 1] → RL and a price vector
p ∈ RL++ such that for (almost all) t ∈ [0, 1]
• x(t) is affordable: p · x(t) ≤ p · ω(t).
• x(t) is individually optimal: x(t) �t y for all y such that p · y ≤ p · ω(t).
• The allocation x(t) is feasible:

∫ 1
0 x(t) =

∫ 1
0 ω(t0.

x(t) has the core property if there is no coalition C ⊂ [0, 1] with positive measure that
blocks x(t), that is, there exists no assignment {y(c) ∈ RL+ : c ∈ C} such that
• yc �c xc for all c ∈ C,
•
∫
C y(c) =

∫
C ω(c).

Theorem: Aumann 1964
If all preferences are strictly monotonic, continuous, and measurable then the core of
this pure exchange economy coincides with the set of all Walrasian equilibria allocations.
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The major conclusions are
• In large economies, the Walrasian equilibria allocations can be identified even

without money v.i.a. the core property.
• The core shrinks and becomes easier to find than for finite populations.

Reading: R. Aumann, Markets with a continuum of traders, Econometrica, 1964.

Problem: Pareto efficiency in large economies
Let ui(x) = x and uj(x) = −αx, where x ∈ [0, 1], α > 0, for a continuum of agents types
i and j. What are the Pareto efficient outcomes?

Solution:

Ui =

∫ 1

0
xf(x) dx = Ef (x)

Uj =

∫ 1

0
−αxf(x) dx = −αEf (x)

As f → g and U1(g) > U2(f), then Eg(x) > Ef (x), so −αEg(x) < −αEf (x). Thus
Uj(g) < Uj(f) and any f is a Pareto efficient outcome.

Problem: Pareto efficiency in large economies with quasi–linear utility
Let U1(x) = x+m1 and Uj(x) = −αx+mj , where

∑
imi = 0. What is the set of Pareto

efficient allocations?

Solution: First, choose x∗ ∈ argmax
∑

i Ui(x).∑
i

Ui(x) = x− αNx = (1− αN)x

• If αN > 1, then x∗ = 0.
• If αN < 1, then x∗ = 1.
• If αN = 1, then x∗ ∈ [0, 1]

Proof. Suppose αN > 1 and x > 0. Then ui = x + m1 and uj = −αx + mj . So,
Ui = ( xN )N +m1 and Uj = − x

N +mj is a Pareto improvement. �
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3.5. Subjective Expected Utility and Arrow-Debreu Equilibria

3.5.1. Modeling Uncertainty with State Spaces

The basic model of uncertainty (as in von Neumann–Morgenstern model) assumes that
the probabilities of all payoffs are known. In this case, choices are modeled as lotteries—
probability distributions. It can be convenient to drop this assumption and describe all
relevant uncertainty by a state space. Probabilities need not be specified in this case. A
state space Ω should satisfy

Definition: Observability—for each state ω ∈ Ω it should be possible to determine
whether or not ω has occurred; sometimes, states can be required to verifiable so that
ω can be proven to third parties.

Definition: Mutual exclusivity—no two states can occur together.

Definition: Exhaustiveness—at least one state must occur.

Furthermore, each state should describe the world in sufficient detail to determine the
payoff of each relevant action.

Definition: Given a state space Ω and a consumption space X, a contingent prospect f
is a function that maps Ω into X. Each f is interpreted as an action that has uncertain
payoffs and delivers f(ω) if ω occurs. Let F be the domain of all uncertain prospects.
The mismatch between real actions and F goes both ways. It can be difficult to specify
Ω and X for real action, most uncertain prospects f ∈ F make no practical sense.

3.5.2. Contingent Commodities

• Let ω = R describe a stock price. Then buying n units of the stock at price p can
be viewed as a prospect f(ω) = n(ω − p). Yet F includes various g(ω) such as
g(ω) = sinω that have little practical meaning.
• Think about a choice between taking a job in the U.S. or abroad. What are the

relevant Ω and X? Too complex to make Ω exhaustive, mutually exclusive, and
sufficiently detailed?
• Payoffs, even monetary ones, are often state–dependent. Take life insurance; Ω =
{alive,dead}. If insurance is bought, f(alive) = −10K, f(dead) = 500K. But is
it the same kind of money?

3.5.3. Subjective Expected Utility

Given Ω and X, let � be the preference over the corresponding �.

Definition: A common model for � is subjective expected utility

U(f) =
∑
ω∈Ω

π(ω)u(f(ω)),

where π(ω) ∈ [0, 1] and
∑

ω π(ω) = 1.

The key axiom of this model is the Sure–Thing Principle, that replaces the independence
axiom.

Definition: Given prospects f , event E, and payoff x, let fEx be the composite
prospect that pays f(ω) if ω ∈ E and x otherwise. The Sure–Thing Principle states

fEx � gEx⇒ fEy � gEy.

To make payoffs state invariant, monotonicity is required.

Definition: Monotonicity is x � y ⇒ xEy � y.
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3.5.4. Subjective Beliefs

U(f) =
∑
ω∈Ω

π(ω)U(f(ω))

The probability measure π reflects the agents subjective beliefs. The term subjective
means that the probabilities π(ω) are attached by individuals rather than objectively
through some mathematical formulas. This makes the model more general, but provides
no clue about how agents should select π. Yet π is uniquely determined by � if payoffs
are state invariant. If payoffs are not state invariant, then � is not sufficient to determine
π uniquely.

Example: Let Ω = {I, d}.

U(f) = 0.95
√
f(I) + 0.05f(d) = 0.99(

0.95

0.99

√
f(I) + 0.01(5f(d)).

There is not enough information here to figure out π.

3.5.5. A Pure Exchange Economy with Uncertainty

The pure exchange economy with uncertainty has the following components
• A population I = {1, . . . , I} (a continuum is acceptable).
• A finite state space Ω.
• L deterministic goods consumed in non–negative bundles (x1ω, . . . , xLω) ∈ RL+

contingent on each ω ∈ Ω.
• Utility functions Ui(xi) defined over state–contingent consumption bundles

xi = (x11i, . . . , xL1i, . . . , x1ωi, . . . , xLωi, . . . , x1Ωi, . . . , xLΩi) ∈ RLΩ
+ .

• Initial endowments wi ∈ RLΩ
+ that are state–contingent as well.

The utility functions Ui will be assumed to have the expected utility form.

Definition: Beliefs are called objective if πi(ω) = πj(ω) for all i, j, and ω; and subjective
otherwise.

3.5.6. The Arrow–Debreu Equilibrium

Assume that each contingent commodity lω is tradable in the market before uncertainty
is resolved. This assumption means that markets are complete. Arrow–Debreu equi-
librium is a a Walrasian competitive equilibrium in the pure–exchange economy with
state–contingent consumptions xi ∈ RLΩ

+ for all i = 1, . . . , I and a price vector p ∈ RLΩ
++

such that
• Each xi is affordable: p · xi ≤ p · wi.
• xi is individually optimal: x �i yi for all yi such that p · yi ≤ p · wi.
• The allocation x1, . . . , xI ∈ RLΩ

+ is feasible:
∑

i xi =
∑

iwi.
This is obviously a special case of Walrasian equilibrium and satisfies the first welfare
theorem. The core and the Aumann Theorem can be defined as well!
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3.6. Subjective Beliefs and Ambiguity Aversion

3.6.1. Implications for the 2× 2 Pure–Exchange Economy

Arrow–Debreu Equilibrium can be used to make some predictions about trade with
uncertainty. Let L = 1. Assume that all beliefs π(ω) > 0 to avoid zero prices for some
contingent commodities.

• If all agents are risk averse, beliefs are objective, and there is no aggregate uncer-
tainty (w =

∑
iwi) is constant, then Pareto efficiency implies full insurance for all

agents.

• If all agents are risk averse, beliefs are objective, and there is aggregate uncertainty,
then the market prices will be inversely correlated with the aggregate endowment
vector w.

• If all agents are risk averse, beliefs are subjective, and there is no aggregate un-
certainty, then agents are not fully insured in the Pareto efficient allocations. The
agents will make bets with each other driven by the difference in their beliefs.

3.6.2. 2× 2 Pure–Exchange Economies with Objective Beliefs

Let I = 2, Ω = 2, L = 1. Consumption is one–dimensional.

U(x1i, x2i) = πui(x1i) + (1− π)ui(x2i).

Assume risk aversion so that u′i(x) is a strictly decreasing function. Assume π ∈ (0, 1).
Beliefes are the same for i = 1 and i = 2.

Case 1: There is no aggregate uncertainty (w =
∑

iwi is constant). Pareto efficiency
implies full insurance for all agents. In the Arrow–Debreu equilibrium

π

p1
=

1− π
p2

.

Market prices reflect objective probabilities!

Case 2: There is aggregate uncertainty w11 +w12 > w21 +w22. Pareto efficiency implies
x1i > x21 for i = 1, 2. In the Arrow–Debreu equilibrium

π

p1
>

1− π
p2

.

The average returns of the first contingent commodity is higher than the average returns
of the second contingent commodity. This is the general equilibrium version of the
CAPM model. It says that assets have a higher correlation with the market (i.e. the
aggregate endowment vector w11 +w12, w21 +w22) have higher expected rates of return.
The reason is that the extra consumption in the good state has a smaller marginal value
than in the bad state. Market prices do not reflect objective probabilities any more.

3.6.3. 2× 2 Pure–Exchange Economies with Subjective Beliefs

Let I − 2, Ω = 2, L = 1. Consumption is one–dimensional.

Assume risk aversion so that u′i(x) is a strictly decreasing function. Beliefs are subjective
π1 > π2. There is no aggregate uncertainty; w =

∑
iwi is constant. Pareto efficiency
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implies betting: x11 > x21 and x22 > x12. The first agent gets more consumption in
state 1 and the second agent gets more consumption in state 2.

Puzzle: any difference in beliefs should produce betting if markets are complete and
agents maximize subjective expected utility.

3.6.4. The Ellsberg Paradox

Choose between two bets{
$1, 000 Tails

$0 Heads
or

{
$1, 000 if the oil price exceeds $50 in one year,

$0 if the oil price is less than $50 in one year.

Repeat for{
$0 Tails

$1, 000 Heads
or

{
$0 if the oil price exceeds $50 in one year,

$1, 000 if the oil price is less than $50 in one year.

Agents often choose to bet on the coin in each case. Within subjective EU model, or
any model of choice behavior with a unique probabilistic belief,

π(T ) > (oil > $50) and π(H) > π(oil < $50),

but π(T ) + π(H) = π(oil > $50) + π(oil < $50) = 1.

The tendency to bet on familiar events, such as the one in the Ellsberg Paradox, is called
ambiguity aversion. Unlike risk aversion, it cannot be modeled by changing attitudes
towards money. Instead, one needs to adapt the notion of subjective beliefs.

Definition: Maximum expected utility representation, or the multiple priors model,
has the form

U(f) = min
π∈Π

∑
ω∈Ω

π(ω)u(f(ω)),

where the set Π is a convex and closed set of subjective probabilistic scenarios.

Example: Maximum Expected Utility
If Π = {π : π(T ) = 1

2 , π(oil > $50) ∈ [0.4, 0.6]}, then{
$1, 000 Tails

$0 Heads
�

{
$1, 000 if the oil price exceeds $50 in one year,

$0 if the oil price is less than $50 in one year.{
$0 Tails

$1, 000 Heads
�

{
$0 if the oil price exceeds $50 in one year,

$1, 000 if the oil price is less than $50 in one year.

Example: Let I = 2, Ω = 2, L = 1, and consumption be one–dimensional.

U(x1i, x2i) = min
π∈Πi

πui(x1i) + (1− π)ui(x21)

Assume risk aversion so that u′i(x) is a strictly decreasing function.
• The sets of scenarios are distinct: Π1 6= Π2.
• There is no aggregate uncertainty: w =

∑
iwi is constant.

• Pareto efficiency implies full insurance whenever Π1 ∩Π2 6= ∅.

Reading: Billot, Chateauneuf, Gilboa, Tallon, Sharing Beliefs: Between Agreeing and
Disagreeing, Econometrica, 2000.
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Example: Another Puzzle for Subjective Beliefs
Two agents I = 2 can duel or not. The state space is Ω = {ω1, ω2}. π(ω1) = 0.9 and
π2(ω2) = 0.9. The utility of winning is 1, the utility of losing is −5, and the status quo
is 0.
• Not dueling is Pareto dominanted by dueling.
• But the sum of payoffs without the duel Pareto dominates the sum of payoffs with

the duel.
In conclusion, when utility functions include subjective beliefs, Pareto efficiency may
produce some unreasonable advice.

Reading: Gilboa, Samuelson, and Schmeidler, No–Betting Pareto Dominance, Econo-
metrica, 2014.

Reading: Rigotti and Shannon, Sharing Risk and Ambiguity, Journal of Economic
Theory, 2005.
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3.7. Auctions with Private Values

Auctions can be used to sell unique items. The items for sale need not be divisible or
generic. Unlike market equilibria, the definition of an auction describes a procedure
rather than the precise outcome as a function of the primitives. There are many auction
procedures. Some allocation is always produced.

Open–bid Auctions:

Definition: In English auctions, bidding price starts at 0 and goes up in small incre-
ments until there is one bidder. It is publicly observed when other bidders quit.

Definition: In Dutch auctions, bidding price starts at a very high price and goes down
until there is one bidder who is willing to pay.

Closed–bid Auctions:

Definition: In first–price auctions, hidden bids are sent to the auctioneer. The highest
bid wins and is the price.

Definition: In second–price auctions, hidden bids are sent to the auctioneer. The
highest bid wins and the price is the second highest bid.

Definition: In all–pay auctions, hidden bids are sent to the auctioneer. The highest
bid wins and all agents pay their bid.

3.7.1. Equilibria in Auctions with Private Values

Bidder i is assumed to have quasi–linear utility

Ui =

{
Vi − p(win), if she wins,

−p(lose), if she does not win,

where Vi is the reservation value and p is the price. Bidder i has non–negative utility
from winning if Vi ≥ p(win) and has negative utility from winning if Vi < p. The latter
situation is called winner’s curse. It can happen if Vi is uncertain at the time of bidding.

Reservation value is called private if it does not depend on the values or signals received
by other bidders and interdependent otherwise. The assumption of private values is
plausible when the auction prize has transparent quality and is meant for private con-
sumption. Reservation values may be interdependent if bidders plan to resell the good(s)
later, or believe that other bidders are better informed about the quality of the good.
In the extreme case, the values are common for all bidders, but uncertain at the time of
bidding.

If all bidders i = 1, . . . , I are assumed to have quasi–linear utility, and the money is
paid to the seller (agent 0) with Uo = R revenue, then Pareto efficiency requires requires
that

∑I
i=o Ui = Vwinner. Thus, the Pareto efficient outcome requires that the winner

has the highest value of all participants. The payments do not matter. Some sellers
(government) may care about Pareto efficiency while other sellers (private) may care
more about revenue.

3.7.2. English and Second–price Auctions with Private Values

Assuming that all Vi are private, then the English auction and the second–price auction
have equilibria in weakly dominant strategies.
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• English auction: each bidder quits when p = Vi

• Second–price auction: each bidder makes a bid Bi = Vi

Proof. Let M = maxk 6=iBk. If M < Vi then U(win) = Vi −M > 0 = U(lose), and
the best outcome (win) can be obtained by Bi = Vi. If M > Vi then U(win) =
Vi −M < 0 = U(lose), and the best outcome (lose) can be obtained by Bi = Vi.
If M = Vi then U(win) = U(lose) = 0, and all strategies are equally good. Thus
Bi = Vi delivers the best outcome in all possible cases. �

The equilibrium outcomes are the same and Pareto efficient: the highest value wins and
the price is equal to the second highest value.8

3.7.3. Dutch and First–price Auctions with Private Values

The Dutch auction and the first–price auction do not have weakly dominant strategies:
the best bidding strategy for agent i depends on the strategies of the other agents.The
two auctions are strategically equivalent: they can be modeled by the same game. There
is the same pool of bidders and strategy Bi(Vi) for agent i. In the Dutch auction, Bi(Vi)
is the price when agent i is willing to stop the auction. The outcome of the first–price
auction is the same because the highest bid wins and equals the winning price. Thus,
the equilibria must be identical in these two auctions. The two auctions can be analyzed
through Bayesian Nash Equilibria.

Assumption: It is common knowledge that each private value Vi has an independent
identical distribution with CDF F(x), where F (x) = Prob{Vi ≤ x}. Consider finding a
symmetric equilibrium bidding function B(Vi). The function B is the same for all i by
symmetry. The function B is assumed to be strictly increasing. All of these assumptions
are justified: they do hold for the equilibrium we find.

If agent i “pretends” that his value is x rather than Vi, and each other j bids B(Vj),
then

Ui(x) = (Vi −B(x))Prob{B(Vj) ≤ B(x) for all j 6= i}

Ui(x) = (Vi −B(x))Prob{Vj ≤ x for all j 6= i}

Ui(x) = (Vi −B(x)) ∗ [F (x)]I−1.

In equilibrium, x = Vi should maximize Ui(x). Otherwise, agent i can deviate by bidding
Bi 6= Bi(Vi). The first order condition U ′i(x) = 0 at x = Vi. It follows that

U ′i(x) = Vi ∗ [[F (x)]I−1]′ − [B(x) ∗ [F (x)]I−1]′ = 0.

By taking Vi = x

U ′i(x) = x ∗ [[F (x)]I−1]′ − [B(x) ∗ [F (x)]I−1]′ = 0.

By integrating from 0 to any V∫ V

0
x ∗ [[F (x)]I−1]′ dx = B(V ) ∗ [F (V )]I−1 −B(0) ∗ [F (0)]I−1.

8 Theory suggests that if all values are private, then each bidder will make a single bid equal to their
value. However, this is not how people behave; typically, they bid more than once, and they make most
bids in a short time before the auction ends. This phenomenon is called sniping. Possible explanations
are that people are avoiding the sellers price manipulation, people do not like to lose, or values are not
private.
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Thus the equilibrium bidding function is

B(V ) =

∫ V
0 x ∗ [[F (x)]I−1]′ dx

[F (V )]I−1
=

∫ V
0 (I − 1)x ∗ F ′(x)[F (x)]I−2 dx

[F (V )]I−1
.

The outcomes are Pareto efficient.

Given a uniform distribution on [0,M ], then F (x) =


0, if x ≤ 0,
x
M , if x ∈ [0,M ],

1, if x ≥M.
The Nash Bargaining equilibria is

B(V ) =

∫ V
0 (I − 1)x ∗ xI−2 dx

V I−1
=
I − 1

I
V

Example: Given private values V1 = 90, V2 = 20, and V3 = 10, then the equilibrium
outcome depends on the rules.
• In the English and second–price auctions, agent 1 wins and pays p = 20.
• In the Dutch and first–price auctions we do not know the outcome unless the

distributions of Vi are specified as well. If values Vi are uniform i.i.d., then agent
1 wins and pays p = I−1

I V1 = 2
390 = 60.

Now, consider if V2 = 80. In the English and second–price auctions price p = 80, while
price p = 60 remains the same in the Dutch and first–price auctions.

3.7.4. All–Pay Auctions with Private Values

Consider finding a symmetric equilibrium bidding function B(Vi). The function B is the
same for all i by symmetry. The function B is assumed to be strictly increasing. All of
these assumptions are justified: they do hold for the equilibrium we find.

If agent i “pretends” that his value is x rather than Vi, and each other j bids B(Vj),
then

Ui(x) = Vi ∗ Prob{B(Vj ≤ B(x) for all j 6= i} −B(x)

Ui(x) = Vi ∗ [F (x)]I−1 −B(x).

In equilibrium, x = Vi should maximize Ui(x). Otherwise, agent i can deviate by bidding
Bi 6= Bi(Vi). The first order condition U ′i(x) = 0 at x = Vi. It follows that

U ′i(x) = Vi ∗ [[F (x)]I−1]′ −B′(x) = 0.

By taking Vi = x
B′(x) = x ∗ [[F (x)]I−1]′

By integrating from 0 to any V

B(V ) =

∫ V

0
x ∗ [[F (x)]I−1]′ dx. =

∫ V

0
(I − 1)x ∗ F ′(x)[F (x)]I−2 dx

If F (x) = x
M , then the Nash Bargaining equilibria is

B(V ) =

∫ V
0 (I − 1)x ∗ xI−2 dx

M I−1

iii - 17



B(V ) =
I − 1

I
(
V

M
)I−1V

The outcomes in the symmetric equilibria in all basic auctions are Pareto efficient, be-
cause the agent with the highest value i wins the auction. The outcome in the English
and second–price auctions is Pareto efficient even if the private values are not i.i.d. The
Dutch and first–price auctions are not Pareto efficient in the asymmetric case.

Example: (Krishna pp.50–51 )
Given that V1 is uniformly distributed on [0,100] and V2 is uniformly distributed on
[0,200].
• Then B1(x) > B2(x) and the outcome is not necessarily Pareto efficient.

3.7.5. The Revenue Equivalence Principle

Consider the average revenues for the second–price and first–price auctions when values
are i.i.d. U [0,M ] with M=1.
• In the first–price auction, revenue is

R =
I − 1

I
∗max

i
Vi.

The random variable maxi Vi has CDF F (x)I = Prob{maxi Vi ≤ x} = ( xM )I = xI .
Thus, average revenue is

E(R) =
I − 1

I

∫ 1

0
x(F ′(x)) dx =

I − 1

I

∫ 1

0
x(IxI−1) dx = (I−1)

∫ 1

0
xI dx = (I−1)

xI+1|x=1

I + 1

E(R) =
I − 1

I + 1

• In the second–price auction, revenue R is the second highest bid B = Vi with CDF

F (x) = Prob{Vi ≤ Vmaxi ≤ x} = Prob{Vi ≤ Vmaxi}Prob{Vmaxi ≤ x}

F (x) = [I(1− x)]xI = xI + IxI−1(1− x) = IxI−1 − (I − 1)xI .

Thus, average revnue is

E(R) =

∫ 1

0
x d(I ∗ xI−1 − (I − 1) ∗ xI) = I ∗ (I − 1)[

∫ 1

0
xI−1 dx−

∫ 1

0
xI dx

E[R] =
I − 1

I + 1

These findings are a special case of the general result known as revenue equivalence.

Definition: Revenue equivalence principle. Assume that two auctions share population
I of agents with i.i.d. private values Vi. Suppose that the Bayesian Nash Equilibria
(including weakly dominant as a special case) in these auctions are such that
• the joint distribution of all Vi are the same.
• the equilibrium allocation of the prize is the same with probability 1 (Pareto effi-

cient).
• the average payments of agents of type zero are zero.

Then the average revenues in equilibria are identical. Note that this principle does not
establish the ex post equality of the revenues, only the ex ante average equality.
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The average revenues do not have to be the same when the allocation of the prize is
different. Pareto inefficient auctions often have higher average revenues than Pareto
efficient ones (e.g. auctions with reserve prices) A small reserve price will increase the
average revenue in all basic auctions. Furthermore the revenue equivalence principle
does not hold well in experiments.

Reading: Kagel(1995), Auctions: A Survey of Experimental Research
Summary: The English auction provides the closest agreement with game theory and
Pareto efficiency. Most subjects realize that they need to quit when the current price
exceeds their reservation value and the rules are conducive for rational decisions. The
second–price auction produces some overbidding, relative to the dominant strategy. On
average, people bid about 10% above their private values. First–price and second–price
generate some overbidding relative to the Dutch and English respectively. The first–
price auction generates ≈ 5− 10% higher average revenues than the Dutch. Ranked by
approximate revenue (lowest to highest) are; English, Second–price, Dutch, First–price,
pay–to–bid, All–pay, and other exotic auctions. The English auction is the closest to
Pareto efficiency; ≈ 90% of auctions are won by agents with highest private value, in
the Dutch and second–price ≈ 80%, and even fewer in the all–pay and exotic auctions.
In short, rules matter even when game theory predicts the same outcomes.
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3.8. Auctions with Common Values

3.8.1. Equilibria in Auctions with Interdependent and Common Values

Assume that all agents i = 1, . . . , I receive i.i.d. signals xi and their ex post value is
common: V = x1 + · · ·+xI . Then neither the Enlish nor the second–price auctions have
weakly dominant strategies. The optimal bid depends on the actions of other agents.
The winner’s curse becomes more prominent; the winner of the auction can pay more
than V . Consider a symmetric Nash equilibrium in the English auction with common
value V . First, order the signals xi so that xk1 ≤ xk2 ≤ · · · ≤ xkI .
• Step 0: Each agent quits at p = Ixi if nobody has quit before, and xk1 is observed.
• Step 1: After one agent quits, each remaining agent quits at p = xk1 + (I − 1)xi.
• Step n: At step n, each remaining agent quits at p = xk1 + · · ·+ xkn + (I − n)xi.

The winner is the agent with the highest signal, and the price p = xk1 + · · ·+xkI−1
+xkI−1

Example: A common value English auction with signals x1 = 10, x2 = 30, and
x3 =50.
• Agent 1 quits at p1 = 3x1 = 30.
• Agent 2 quits at p2 = x1 + 2x2 = 10 + 2 ∗ 30 = 70.
• Agent 3 wins and pays p = 70 < 90 = V .

This is a Bayesian Nash equilibrium.
Proof. Suppose that agent 1 deviates and wins. Then agent 2 will quit when
p > 3x2 = 90 and agent 3 will quit when p = x2 + 2x3 = 30 + 2(50) = 130 > V .
Thus it is not optimal for agent 1 to deviate. Suppose that agent 2 deviates and
wins. Then agent 1 quits when p > 3x1 = 30 and agent 3 quits when p = x1+2x3 =
10 + 2(50) = 110 > V . Therefore deviation is not optimal and agent 3 remains the
winner. �

Consider the second–price auction with common value V . Let F (·) be the CDF of xi.
There is a symmetric Bayesian Nash Equilibrium in the second–price auction where

Bi(xi) = E[V : second highest signal is xi as well] = E[V : xk ≤ xj = xi for all k, j 6= i]

Bi(xi) = 2(xi) + (I − 2)

∫ xi
0 xkF (xk)

′ dxk

F (xi)
.

Example: 2nd Price Auction with Common Values
Let x1 = 100, x2 = 300, and x3 = 500 be realized from F (·) ∼ U [0, 1000]. Then

Bi(xi) = 2xi + (I − 2)

∫ xi
0 xk(1/1000) dxk

xi/1000
= 2xi + (I − 2)(

1

xi
)(
x2
k|xi
2
− 0)

Bi(xi) = 2xi + (I − 2)
xi
2

• B(x1) = 2(100) + 50 = 250, B(x2) = 2(300) + 150 = 750, B(x3) = 2(500) + 250 =
1250.
• Agent 3 wins and pays p = 750.

Winner’s curse is possible. Consider if x1 = 100, x2 = 420, and x3 = 500. Now
• B(x2) = 2(420) + 210 = 1050.
• Agent 3 wins and pays p = 1050 > V = 100 + 420 + 500 = 1020.

The revenue equivalence principle does not hold if signals are not i.i.d. Pareto efficiency
holds automatically in the case of common–value. However, it can be lost as well with
interdependent values and affiliated signals. If signals are affiliated (a strong form of
positive correlation), then E(REnglish) ≥ E(RSecond–price) ≥ E(RFirst–price).
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3.8.2. The Drainage Tract Model

Suppose some bidders are insiders (informed), others are not. Suppose agent 1 (the
neighbor) knows V , all others i = 2, . . . , I just know the CDF F (·) of V . Take I = 2
and uniform distributions.
• According to Milgrom’s Theorem 5.3.1. at equilibrium, the neighbor and non–

neighbor bidders both bid B(s) = 1
s

∫ 2
0 v(r) dr. The non–neighbor receives an

expected profit of zero.
• Bn(V ) = V

2 and B(s)nn = s
2 is optimal in the first–price auction with private

values.
The Drainage tract model predicts; insiders get positive average profits, uninformed
agents get average profits of zero, the number of uninformed agents does not affect the
average revenue, the bids of uninformed agents are not correlated with the value. For
further reading see Hendricks, Porter and Wilson, Auctions for Oil and Gas Leases with
an Informed Bidder and a Random Reservation Price, (1994).
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3.9. Auctions with Many Units

3.9.1. Multi–Unit Auctions

Let I agents compete for N ≤ I items. First, suppose that each agent needs just one
item and has private value Vi. Multi–unit sealed–bid auctions allow each agent to make
several bids of (k, b) type. Note that each bid (k, b) is equivalent to k bids of value b.
So, it is convenient to assume that each bidder i can make several bids bi1, . . . , bik. The
K bids satisfying biK ≤ . . . ,≤ bi1 indicate how much a bidder is willing to pay for each
additional unit. If bik > bik+1, then at any price p lying above bik+1 and below bik bidder
i is willing to buy exactly k units. A bid vector (k, b) can be thought of as an “inverse
demand function” and can be inverted to obtain i’s demand function

di ≡ max{k : p ≤ bik} : R+ → {1, 2, . . . ,K}.

A total of N ×K bids are collected and the K units are awarded to the K highest of
these bids—that is, if bidder i has k ≤ L of the K highest bids, then i is awarded k
units. The implicit allocation rule may be framed in conventional supply and demand
terms. The aggregate demand function determines how many units are demanded in all
at different prices. The auctioneer forms a demand curve

D(p) =
∑

(k,b):b≥p

k.

Since the number of units to be sold is fixed, the supply function is vertical. Denote c−i

the K–vector of highest competing bids facing bidder i. The residual supply function
S−i facing bidder i is

S−i(p) = K −max{k : c−ik ≥ p}.
3.9.2. The inefficiency of equilibia in the uniform–price auctions

In a uniform–price auction all K units are sold at a “market–clearing” price p such that
the total amount demanded is equal to the total amount supplied. The price is the
largest price where D(p) ≥ N + 1, and is equal to the highest losing bid

p = max
i
{biki+1}.

The uniform–price auction reduces to a second–price sealed–bid auction when there is
only a single unit K = 1 for sale. Similarly, consider a uniform–price auction where each
agent can demand at most one item. Agent i’s utility is

Ui =

{
Vi − p(win), if she wins one or more item,

0, if she does not win any items.
.

Let Vi be private and hence, unaffected by other Vj . Then it is a weakly dominant
strategy for each i to bid Bi = Vi

Proof. Let M be the N th highest bid across all j 6= i. If Vi ≥ M , then agent i’s best
outcome is to win an item at price M ; bidding Bi = Vi will do that. If Vi < M , then
agent i’s best outcome is to win no items; bidding Bi = Vi will do that. �

Now, assume that each agent can demand more than one item, but that there are no
complementarities. Agent i’s utility is

Ui =

{
Vi(q)− q × p(win), if she wins q,

0, if she does not win any items.
.
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The sequence of marginal utilities Vi1 = Vi(1), Vi2 = Vi(2)− Vi(1), . . . is declining. The
utility depends on the quantity k, but not on the combination of items. Claim: Bidding
Bik = Vik is no longer dominant. When a bidder wants to buy more than one unit and
when the units have declining marginal values, a bidder generally has an incentive to
reduce her demand, that is, to bid less than her value for some units.

Example: (Milgrom pp.258–259 ) Suppose there are 2 bidders and two units q for sale.
Bidder 1 demands only a single unit and has value V1(q) = v1 for all q ≥ 1, where v1

has a uniform distribution on U [0, 1]. Bidder 2 has demand for two units, the first unit
is worth v21 and the second is worth v22, where 0 < v22 ≤ v21 < 1.
• Bidder 1 has a weakly dominant strategy to bid b11 = v1 and b12 = 0.
• With two units for sale, bidder 2 is assured of winning at least one item if she

places a positive bid. Her expected payoff is

U2 = E[(v21 + v22 − 2b11)1{b11<x} + (v21 − x)1{b11>x}

U2 =

∫ x

0
(v21 + v22 − 2b11) db11 +

∫ 1

x
(v21 − x) db11

U2 = (v21 + v22)x− x2 − 0 + (v21 − x)− (v21 − x)(x)

U2 = v21 + v22x− x.

This function is maximized at x = 0; the optimal bid for the second unit is zero.
Bidder 2 always finds it optimal to bid as if she had demand for only one unit,
regardless of her actual values. This is an example of demand reduction, where
Bidder 2 bids less than their value v22 on the second item. Note that the outcome
is not Pareto efficient; suppose that v22 > v1, then it is Pareto optimal to allocate
both items to agent 2.

Other possible rules are; the auctioneer sells each item seperately at a second–price or a
first–price auction. There are potential issues;
• The declining price anomaly is when price tends to decrease from one item to the

next. See
• The second–price auction produces variable prices, but also reveals the discrepancy

between the highest bid and the second–highest bid.
• Non–monotonicity: may occur wherein agents who bid more may pay less because

of weaker competition.
These features can be problematic because participants and sellers can be put in an
awkward situation in their firms/institutions. The uniform–price auction does not have
this problem because all participants pay the same price.
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3.9.3. Multi–Unit Auctions with Complementarities

Complementarities arise when agents attach a value V (C) for each combination9 of
items and V (C) 6=

∑
k∈C vk. When items are complementary, Pareto inefficiencies are

prevalent.

Example: Two licenses are auctioned to three companies in separate auctions. Values
are

V1(x) = 100 V1(y) = 200 V1(xy) = 300
V2(x) = 200 V2(y) = 100 V2(xy) = 300
V3(x) = 0 V3(y) = 0 V3(xy) = 600

The auctions will allocate x to agent 2 and y to agent 1, unless agent 3 chooses to
bid more than 200 in each auction (which is risky for her). This allocation is Pareto
inefficient, because allocating x and y to agent 3 can cause a Pareto improvement.

Example: Two licenses can be auctioned to three companies only as a bundle. Values
are

V1(x) = 100 V1(y) = 100 V1(xy) = 400
V2(x) = 100 V2(y) = 200 V2(xy) = 300
V3(x) = 300 V3(y) = 300 V3(xy) = 300

Agent 1 wins and the outcome is Pareto inefficient. Allocating y to agent 2 and x to
agent 3 can cause a Pareto improvement.

It appears that the optimal auction should make all agents to submit bids for all possible
combinations.

9 See Milgrom pp.278–279 for evidence that the bids for smaller combinations are disproportionately
low.
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3.10. Vickrey–Clarke–Groves Mechanisms

3.10.1. Vickrey–Clarke–Groves Framework

There is a population of agents I ∪ {0} where agent 0 collects payments and pays out
transfers. In applications, agent 0 is usually a government institution or a seller in
auctions. X = Z × RI is the feasible consumption space for agents i ∈ I with quasi–
linear utility functions Ui(z, pi) = Vi(z) − pi. The vector (z, p1, . . . , pI) means that the
allocation z is chosen and all agents pay p1, . . . , pI to agent 0. Agent 0 has utility
U0 =

∑I
i=1 pi with only a monetary component, and is otherwise unaffected by z. The

Pareto efficient outcome requires
∑

i∈I Vi(z) to be maximized. What happens if the
auctioneer asks the agents directly about Vi? There will be incentives to misrepresent.
Suppose that all agents are asked directly about their values Vi(z), and then the sum∑

i∈I V̂i(z) is maximized based on their reports V̂i(z). Then the agents will have strong

incentives to misrepresent their value functions (i.e. V̂i 6= Vi

Example: Consider dualistic public good provision Z = {0, 1}. If not provided Vi(0) =
0.
• If the auctioneer asks all agents to report Vi = Vi(1) ∈ [−M,M ], then it is a weakly

dominant strategy to report V̂i = M if Vi ≥ 0 and report V̂i = −M if Vi < 0. The
equilibrium will be z∗ = 1 if #{i : V̂i ≥ 0} > #{i : V̂i < 0}. This outcome can be
far from Pareto efficient.

Vickrey–Clarke–Groves (VCG) mechanisms are designed to make it a weakly dominant
strategy to report the function Vi truthfully. VCG mechanisms eliminate the incentives
to lie by imposing additional payments on all agents i ∈ I. These payments are called
externality taxes10. A special agent 0 (e.g. the government) is required.
• Step 1: Let all agents i ∈ I report the function V̂i(z). Choose z∗ ∈ Z that

maximizes
∑I

i=1 V̂i(z). Agent 0 is passive and does not report anything.
• Step 2: Let every agent k pay a tax

pk = max
z∈Z

∑
j 6=k∈I

V̂j(z)−
∑
j 6=k∈I

V̂j(z
∗).

Agent k is called pivotal if z∗ does not maximize
∑

j 6=k∈I V̂j(z). The pivotal agent affects
the social choice for the rest of the population I \ k. Pivotal agents pay pk > 0.

Theorem: In the VCG mechanism, each agent i ∈ I has a weakly dominant strategy to
report V̂i = Vi. The outcome in this weakly dominant strategy equilibrium is Pareto effi-
cient. Moreover, all such mechanisms have VCG form with pk = P (V̂−k−

∑
j 6=k∈I V̂j(z

∗).

Proof. Agent k is free to report any V̂k. The mechanism selects z∗ that maximizes∑
i V̂i(z). Note that z∗ depends on V̂k. Utility

Uk(V̂k, V̂−k) = Vk(z
∗)− pk = Vk(z

∗) +
∑
j 6=k∈I

V̂j(z
∗)− P (V̂−k),

is maximized if Vk(z
∗) +

∑
j 6=k∈I V̂j(z

∗) is maximized. This occurs at V̂k = Vk. �

10 Externality taxes may be combined with lump–sum subsidies as well.
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VCG mechanisms can be used
• to choose the optimal quantities of public goods; let Vi(Q) be the value function

and proceed accordingly.
• to design auctions; the second–price auction is a special case for a one–unit auction.
• in the multi–unit case, VCG mechanism can be applied in the case of perfect

substitutes Vi(q) = Vi1 + · · · + Viq and complements where Vi(C) depends on the
combination C. When bids are made for combinations of goods, such auctions are
called combinatorial.

What can go wrong?
• Agent 0 can be hard to select. All payments made to agent 0 cannot be immediately

redistributed because it would change the incentives to tell the truth. If agent 0 can
run many VCG mechanisms then redistribute all procees across a large population
through lump–sum payments, then it may work. in the auction setting, it is natural
to assume that the seller can collect payments.
• Bidders may refuse to participate.
• The mechanism is open to group manipulation.
• The mechanism does not maximize the seller’s revenue.
• The revenue is not monotonic with respect to the number of bidders, there can be

incentives to add shill bidders.
• The function V̂i can be very complex to report. If the agents fail to report some

of their values, the outcome need not be Pareto efficient.
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3.11. General Mechanisms

3.11.1. Mechanisms

Mechanism design starts from the following primitives
• A population of I agents.
• A set X of feasible alternatives. Each x ∈ X can describe both the consumption of

public goods and private consumption bundles. Say xi ∈ Rn+ and x = (x1, . . . , xI)
such that

∑
i xi =

∑
iwi.

• For each i there is a set Θi = {θi, . . . } of possible types of agent i. Each possible
type θi includes information about preferences (utilities), initial endowments, etc.
• For each i, there is a set Si of possible strategies (actions) that agent i can take

in the mechanism. Mechanisms are called direct if Si = Θi, that is, each agent
announces some type θ̂i as her strategy.
• A function g : S1 × · · · × SI → X that determines the choice g(s1, . . . , sI) ∈ X for

each strategy profile (s1, . . . , sI). If g determines some distribution in X, then X
needs to be replaced by ∆(X)—the space of possible distributions in X.

Problem: Given u1 = α̂αβ̂1−α and u2 = (1− α̂)β(1− β̂)1−β, find a mechanism g(s) and
a corresponding social choice function f∗(s).

Solution: g(s) = {Ask α̂, β̂ and implement Walrasian equilibrium}. It is weakly domi-
nant to report α̂ = 1, β̂ = 0.

g(s) = {x11 = 1, x22 = 1}.

Therefore, a SCF f∗(s) = {Ask α̂ and β̂, x11 = 1 and x22 = 1 for all α̂, β̂}.

Problem: First–price auction with Uniform Distribution
f(θ) = {Highest Vi receuves good at some price}. What is a mechanism g(s) and a
corresponding SCF f∗(s)?

Solution:
g(s) = {Highest si = bi receives the good at price bi}

f∗(s) = {Ask V̂i and set bi =
I − 1

I
V̂i, then follow the first–price auction with bi’s}
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3.12. Social Choice Functions

3.12.1. Social Choice Functions

Unlike a mechanism, a social choice function (SCF) describes the social choice x ∈ X as a
function of individual true types. Social choice functions are mappings f : Θ1×· · ·×ΘI →
X. The outcome f(θ1, . . . , θI) is obtained when the true types are θi.

Definition: A SCF is called Pareto efficient if f(θ1, . . . , θI) is Paretio efficient in X
when individual preferences are �θi .

Definition: A SCF is called strategy proof if f(θ, θ−i) �θi f(θ′, θ−i) for all θi, θ
′
i, and

θ−i.

Each SCF can be interpreted as a direct mechanism f∗ where Si = Θi and

f∗(s1, . . . , sI) = f(θ1, . . . , θI).

Strategy proofness means that s∗i (θi) = θi is a weakly dominant strategy in this direct
mechanism. If f is not strategy proof, then it is not clear why the mechanism f∗ should
implement f . Thus, f∗ and f are not the same, though they may seem very similar.

3.12.2. Dominant Strategy Implementation

Definition: Say that s∗i (θi) is a weakly dominant strategy for agent i with type θi in
the mechanism g if

g(s∗i (θi), s−i) �θi g(s′i, s−i)

for all s′i and s−i.

If all i have such weakly dominant strategies for all types θi, then the mechanism g has
an equilibrium in weakly dominant strategies. The SCF f is implemented by g, or g
implements f , in weakly dominant strategies if

f(θ1, . . . , θI) = g(s∗1(θ1), . . . , s∗I(θI)).

3.12.3. Examples of Strategy Proofness with Type Constraints

The second–price auctions and VCG mechanisms are strategy proof when preferences
are quasi–linear, and agent zero just collects money. X can be finite if all values and
payments are discrete (e.g. quoted in whole dollar numbers).

The Median–peak (median–voter) social choice function with single–peaked preferences
on X ⊂ R, where each �i has a peak pi such that

x < y ≤ pi ⇒ y �i x
pi ≥ y > x⇒ y �i x

and it is strategy proof.

Uniform rules—X = {(x1, . . . , xI) ∈ RI :
∑I

i=1 xi = C}—when preferences �i are
single–peaked over xi are strategy proof.
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3.13. Strategy Proofness in Practice

3.13.1. The Gibbard–Satterthwaithe Theorem

The revelation principle implies that strategy proof SCFs are exactly those that can
be implemented by some mechanism in weakly dominant strategies. However, The
Gibbard–Satterthwaite Theorem shows that it is not easy to combine strategy proof-
ness with Pareto efficiency. First, say that f is dictatorial if there is a d ∈ I such that
f(θd, θ−d) �θd y for any θd, θ−d, and y ∈ X. If �θd is a linear order (complete, transitive,
and antisymmetric), then there is only one such f(θd, θ−d).

Theorem: The Gibbard–Satterthwaithe Theorem:
Given a population I, feasible set X, types Θ = Θ1 × · · · × ΘI , and a social choice
function f : Θ :→ X, if
• for each i, the class of possible �θi includes all linear orders on X,
• |X| ≥ 3 is finite,
• f is Pareto efficient (if x is the best in X for all θi, then f(θ1, . . . , θI) = x),
• f is strategy proof,

then f is dictatorial.

Thus, the theorem states that the five conditions; that types θi allow all linear orders,
|X| ≥ 3, f is Pareto efficient, f is strategy proof, and f is not dictatorial, cannot hold
together. Pareto efficiency and |X| ≥ 3 can be relaxed further to the assumption that at
least three alternatives can be social choices for some realizations of types. If any single
condition is dropped, then examples can be found.

Example: 1. Suppose that |X| = 2. Majority voting satisfies that types θi allow all
linear orders, f is Pareto efficient, f is strategy proof, and f is not dictatorial.

Example: 2. Now suppose |X| ≥ 3; pick two alternative exogenously, then run majority
voting. The outcome is Pareto inefficient, but satisfies that types θi allow all linear
orders, |X| ≥ 3, f is strategy proof, and f is not dictatorial.

Example: 3. The Borda count voting mechanism produces an outcome that satisfies
that types θi allow all linear orders, |X| ≥ 3, f is Pareto efficient, and f is not dictatorial,
but the Borda count f is not strategy proof.

Example: 4. Suppose that f is dictatorial. A lexicographic dictatorship (where agent
1 chooses first, then agent 2 chooses among all options acceptable to agent 1, etc . . . )
produces an outcome that satisfies that types θi allow all linear orders, |X| ≥ 3, f is
Pareto efficient, and f is strategy proof.

Example: 5. (Median–Voter Mechanism) Suppose that all agents have single–
peaked preferences on X ⊂ R. This assumes that types θi exclude some linear orders.
Let pi be the peak of agent i and

f(p1, . . . , pI) = median(p1, . . . , pI) = pm,

such that

#{i : pi ≤ pm} ≥
I

2
and #{i : pi ≥ pm} ≥

I

2
.

Then f is strategy proof and implemented in weakly dominant strategies by the direct
mechanism f∗. An interesting feature for political scientists is that pm cannot be strictly
beaten by any other alternative in majority voting. Such pm is called a Condorcet winner.
In general, Condorcet winners need not exist, as shown by the Condorcet Paradox.
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3.13.2. Maskin Monotonicity

Say that f is Maskin monotonic if for all x ∈ X, θ1, . . . , θI , and θ′i such that the lower
contour set at x for type θ′i includes the lower contour set at x for type θi,

x = f(θi, θ−i)⇒ x = f(θ′i, θ−i).

The inclusion of the lower contour sets means that for all y ∈ X, then x �θi y implies
x �θ′i y.

Lemma: (Maskin): Suppose that all preferences are linear orders. If f is strategy proof,
then f is Maskin monotonic.
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3.14. Bayesian Implementation

3.14.1. Bayesian Implementation

Assume that all agents have expected utility with Bernoulli index ui(x, θi). Suppose
that the joint distribution φ of types (θ1, . . . , θI) is common knowledge.

Definition: Say that s∗i (θi) are a Bayesian Nash equilibrium if

E(ui(g(s∗i (θi), s
∗
−i(θ−i)), θi)|θ−i) ≥ E(ui(g(s′i, s

∗
−i(θ−i)), θi)|θ−i),

for all s′i and θi.

The SCF f is implemented by g, or g implements f , in BNE if

f(θ1, . . . , θI) = g(s∗1(θ1), . . . , s∗I(θI)).

In many contexts, economists have to use Bayesian Implementation because
• they study some exogenously given mechanism (e.g. first–price, Dutch, all–pay

auctions, bargaining models, etc.).
• they want to implement some social choice function that is not strategy proof.

Example: Bargaining application
Suppose that two agents, the seller i = 1 and the buyer i = 2, need to allocate an item
that is owned by the seller. Assume that the utility functions are quasi–linear.
• If there is no trade, U1 = θ1 = V1 and U2 = 0.
• If there is a trade at price p, then U1 = p and U2 = θ2 − p = V2 − p.
• Pareto efficiency dictates that there should be a trade whenever V2 ≥ V 1.

Problem: VCG Mechanism
One way to run an efficient exchange is to have agent 0 pay a fixed price P to the seller
and then run a second–price auction. Let θ1 and θ2 be both uniformly i.i.d. distributed
on [0,M ]. What p would be sufficient for all seller types?

Solution:

• Paying M should be enough for all seller types, regardless of the buyer’s behavior.
• If the buyer conforms to the equilibrium, the M

2 is enough because the seller of
type θ1 = M expects to pay that much on average at the second–price auction.
• However, the average revenue in the second–price auction is only M

3 . Thus, the
VCG mechanism will always run a deficit if it provides incentives to participate
for all types.

Example: Split–the–Difference Mechanism
To avoid deficits, one can use a variety of mechanisms with the Bayesian equilibria. Let
both agents make bids B1 and B2.
• If B1 > B2, then there is no trade.
• If B2 ≥ B1, then there is a trade at the price p = B1+B2

2 .
• Note that if both agents make bids Bi = θi, then the outcoe is Pareto efficient.

However, this is not a BNE here.

Problem: Split–the–Difference Mechanism
Let θ1 and θ@ be both uniformly i.i.d. distributed on [0,M ]. What is a Bayesian Nash
equilibrium for this mechanism? Does the equilibrium have a balanced budget? Is the
outcome Pareto efficient?

Solution:
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• Then

B∗1 =
M

4
+

2

3
θ1

B∗2 =
M

12
+

2

3
θ2

is a Bayesian Nash equilibrium (check!).
• This equilibrium is budget–balanced, but not Pareto efficient.

3.14.2. The Revelation Principle

Revelation principles are formulated both for dominant strategy implementation and
Bayesian implementation. They characterize all social choice functions that can be im-
plemented by some mechanism g. The revelation principle states that if f is implemented
by g (in dominant strategies and BNE), then f is also implemented by its direct mech-
anism f∗ (in dominant strategies and BNE) so that s∗i (θi) = θi. As the equilibrium
involves truth–telling, the function f is called truthfully implementable. Thus the rev-
elation principle asserts that if f is implementable by some g, then it is also truthfully
implementable by its direct mechanism f∗. In the case of dominant implementation, f
must be strategy proof.

Theorem: The Revelation Principle: Take a social choice function f : Θi× · · · ×ΘI →
X. The following statements are equivalent:
• f is strategy proof.
• f is implemented by the direct mechanism f∗ with θ∗i = θi.
• f is implemented by some mechanism g in weakly dominant strategies s∗i (θi) such

that f(θ1, . . . , θI) = g(s∗1(θ1), . . . , s∗I(θI)) for all θi.

3.15. Arrow’s Impossibility Theorem

3.15.1. Arrow’s Theorem

Instead of social choice functions, the Arrow Theorem establishes impossibility for social
welfare aggregators F : Θ→ R where R is the space of preferences on X.

Theorem: The following conditions cannot hold together
• |X| ≥ 3.
• F (θ) is complete and transitive for all θ.
• F is Pareto efficient: if x �i y for all i, then xP (θ)y.
• Independence of Irrelevant Alternatives, which states

xP (θ,X)y ⇔ xP (θ,X 6 {z})y for z 6= x and z 6= y.

• F is not dictatorial.

The Gibbard–Satterthwaithe and Arrow Theorem are related.

Proof. If F is possible, then f is possible as well. �

3.16. Voting

3.16.1. Voting and Single–Peaked Preferences

Definition: D ⊂ I is decisive if there are x, y ∈ X and types θ1, . . . , θI such that
• x is the best choice for θi, i ∈ D.
• y is the best choice for θj , j /∈ D.
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• x = f(θ1, . . . , θI).

Pareto efficiency implies D = I is decisive.

I = A ∪B ∪ ¬D
1st x y z

2nd y z x

3rd z x y

Proof. If x is the best choice for i ∈ D ⇒ x = f(θ1, . . . , θI). Take any z ∈ X, then z is
the best for all i ∈ D, z = f(θ1, . . . , θI). Assume D is decisive, D = A ∪ B for disjoint
groups A, B. Then either A or B is decisive.
• Case 1: f 6= x, f 6= y.
• Case 2: f = x, A is decisive.
• Case 3: f = y, B is decisive.

�

If D = {d}, then d is a dictator.
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3.16.2. Voting Problems

Definition: The uniform division rule is as follows. It is assumed that X describes all
possible divisions of a fixed amount C, where X = {(x1, . . . , xI) ∈ RI :

∑
i xi = C} and

preferences are constrained; �i is single–peaked over x and there are no externalities.
• If

∑I
i=1 pi = C ⇒ xi = pi, then everyone’s demand is met.

• If
∑I

i=1 pi > C, then we must find a ration r such that
∑I

i=1 min{pi, r} = C.
There is a unique r that satisfies this condition.
• If

∑I
i=1 pi < C, then we must find a quota q such that

∑I
i=1 max{pi, q} = C.

This is an example of constrained demand.

Problem: Uniform Division Rule with a Ration
What is the result of the uniform division rule with C = 10, p1 = 2, p2 = 3, p3 = 4,
p4 = 5?

Solution:

• If r ≤ 2⇒
∑I

i=1 min(pi, r) = 4r < 10, then the ration r is too low.
• If r ∈ (2, 3] ⇒ p1 + 3r = 10, then agent 1 has her demand met and the others

ration
2 + 3r = 10

r =
8

3
.

• If r ∈ (3, 4]⇒ 5 + 6 > 10⇒, then the ration r is insufficient.
Thus, r = 8

3 is the unique ration. The allocation is x = (2, 8
3 ,

8
3 ,

8
3).

Problem: Uniform Division Rule with a Quota
What is the result of the uniform division rule with C = 18, p1 = 2, p2 = 3, p3 = 4,
p4 = 5?

Solution:

• If q ≤ 2→
∑I

i=1 pi < 18, then the quota q is insufficient.
• If q ∈ (2, 3]→ q = 6 /∈ (2, 3], then the quota is infeasible.
• If q ∈ (3, 4]→ 2q = 9 q = 4.5 /∈ (3, 4], then the quota is infeasible.
• If q ∈ (4, 5]→ 3q = 13 q = 13

3 .
Thus, q = 13

3 is the unique quota. The allocation is x = (13
3 ,

13
3 ,

13
3 , 5).

Note that we have Pareto efficiency and strategy proofness—no agent wants to consume
less and no agent wants to consume more. If a defecit is replaced by a surplus, then
xi � xj for all j 6= i. Also note, there is considerable interest in implementation of
weakly dominant strategies—strategy proof mechanisms that reveal an agent’s type.

Reading: Y. Sprumont. The Division Problem with Single–Peaked Preferences: A
Characterization of the Uniform Allocation Rule, Econometrica, (1991)

Definition: The Borda Count is a practical mechanism used in committee work. Let
�i be linear orders Ri(x) = #{y ∈ X : y �i x}. Rank Ri = 1 if x is best for i, Ri = 2 if
x is 2nd best for i, etc. Add up all the ranks, and pick the lowest one.

f(�i, . . . ,�I) minimizes

I∑
i=1

Ri(x).
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Example: The Borda Count

I : 1 2 3

1st x x y

2nd y y x

3rd z z z

4th w w w∑
i

Ri(x) = 4,
∑
i

Ri(y) = 5,
∑
i

Ri(z) = 9,
∑
i

Ri(w) = 17.

Thus, x is chosen. Note that Agent 3 could lie about preference on x to influence the
outcome for a benefit. Therefore, the Borda Count is not strategy proof—it can be
manipulated by lying about bad alternatives.

Example: Fake Pairwise Majority Voting
Take any x, y ∈ X and run majority voting between x and y. This scheme is not Pareto
efficient.

Example: The Median Peak
Given p1 = p2 = p3 = 0, p4 = 30, and p5 = 50.
• The median is 0.

Given p1 = p2 = 0, p3 = 60, p4 = 30, and p5 = 50.
• The median is 30.

The median always exists and does not need tie–breaking if I is odd.
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3.17. Bargaining and the Myerson–Satterthwaite Theorem

Consider the two–agent bargaining problem with the seller’s and buyer’s private values,
V1 and V2, that have positive density in [0,M ]. Claim: The following conditions cannot
hold together in any Bayesian Nash equilibrium in any mechanism.
• All types have ex ante incentives to participate (ex ante individual rationality).
• The average revenue of the seller is equall to the average payment of the buyer (ex

ante balance budget).
• The ex post Pareto efficiency trade occurs if and only if V2 ≥ V1.

3.17.1. The Myerson–SatterWaite Theorem

The Myerson–SatterWaite Theorem: Suppose that θ1 and θ2 are independently
distributed on [0,M ]. The distributions need not be the same, but must have positive
density. Also, agents are assumed to be risk neutral. Suppose that a mechanism g
implements a social choice function f : Θ → {(i, p)}. Then the following conditions
cannot hold together.
• All types have incentives to participate—their average utility

Ui(participating) ≥ Ui(not participating).

• The budget is balanced.
• The equilibrium is Pareto efficient.

The result of the theorem is an argument against the Coase Theorem, where private
trade is enough to restore Pareto efficiency from any initial allocation. This is because
the Coase Theorem requires perfect information!

Example: VCG mechanism
The central planner (Agent 0) pays a fixed price to the seller, and then runs the second–
price auction.
• To make all types participate the price has to be at least M

2 if the distributions
are uniform.
• The expected revenue is M

3 .
• Thus, there is an average budget deficit of M

6 .

Example: Split–the–difference mechanism
The BNE strategies are B∗1 = M

4 + 2V13 and B∗2 = M
12 + 2V13 .

• The equilibrium is budget-balanced and inefficient.

Example: The direct mechanism that implements the same social choice function;
agents announce values B1 and B2. If M

12 + 2B2
3 ≥

M
4 + 2B1

3 , then there is trade and the

price is the average of M
12 + 2B2

3 and M
4 + 2B1

3 .
• Truth–telling is BNE, but the outcome is inefficient because of the rules.
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3.18. Matching

3.18.1. Matching Problems

Matching problems are varied and complex (e.g. students and colleges, hostpitals and
doctors, marriages, kidney transplants, etc.). Money is allowed to be used, sometimes,
but can be restricted or totally banned. Matching problems include assignment prob-
lems (where only one–side has preferences), marriage problems (where both sides have
preferences and the matching is one–to–one), and admission problems (where both sides
have preferences and the matching is not one–to–one).
Take sets M and W . Each m has preferences over W ∪ {single}. Each w has preference
over M ∪ {single}. A matching is a function F : M → W ∪ {single} such that F (m) =
F (m′) is possible only if F (m) = F (m′) = single. Let G : W → M ∪ {single} be the
corresponding function for w.

A matching is stable if
• Each m prefers F (m) to being single. Each w prefers G(w) to being single.
• There is no pair m and w such that m prefers w to F (m) and w prefers m to G(w).

Stability implies Pareto efficiency. Note, stability is not gauranteed in one–sided markets.

Example: Roommate Problem

m1 : m2 � m3 � m4

m2 : m3 � m1 � m4

m3 : m1 � m2 � m4

m4 : anyone.

3.18.2. Allocation Problems

An allocation problem is a tuple that specifies population I, the set of choices H, and
preferences �i over H. An assignment (matching) is a function a : I → H so that
a(i) = a(j) implies i = j. Functions such as these are called injective. If |I| = |H|, then
assignments are one–to–one. An assingment is called Pareto efficient if there is no other
b such that all agents prefer b(i) to a(i) and some do it strictly.

Two kinds of mechanisms that achieve Pareto efficiency are
• Top trading cycles mechanisms (Gale 1962).
• Serial choice (serial dictatorship, priority) mechanisms.

3.18.3. Assignment Problems

The number of all possible assignments is N ! and grows very fast. An assignment
a : I → N is Pareto inefficient if there is b : I → N such that
• Ui(b(i)) ≥ Ui(a(i)) for all i and Ui(b(i)) > Ui(a(i)) for some i.

If no such b exists, a : I → N is efficient.

iii - 37



3.18.4. Top Trading Cycles

Consider a house allocation problem. Suppose that
• The number of agents is the same as the number of houses, I = H.
• a(i) is the initial assignment.
• All ranking are strict, so that each agent i is never indifferent between two distinct

options:
Ui(hm) 6= Ui(hn) whenever m 6= n.

Let every agent i pick her best choice B(i). Say that i1, i2, . . . , ik is a top trading cycle
if B(in) = a(in+1) for all n = 1, . . . , k − 1 and B(ik) = a(i1). Such cycles must exist.

Proof. Assign the houses in each cycle and take the agents and houses in each TTC off
the market. Repeat for the remaining agents and houses. Continue until all agents are
assigned a house. �

The TCC mechanism is Pareto efficient.

Proof. Suppose that t(i) is the assignment produced by the TTC and b(i) is a Pareto
improvement. The members of any TTC in the first round get their top choices. Thus
t(i) = b(i) for all i who get a house in any such cycle. By induction with respect to the
number of rounds, t = b for all i. �

The TCC mechanism is strategy proof.

Proof. Let agent i complete a cycle in round k. The top trading cycles that agent i can
complete before round k are still available at round k. (Note that agents cannot change
their minds. They report their preferences before the algorithm starts). All trading
cycles that agent i can complete after round k provide no better alternatives than what
she gets in round k. �

Theorem: The top trading cycle algorithm is Pareto efficient and strategy proof. It is
a dominant strategy for each agent to announce her true preference (type).

This result does not contradict the Gibbard-Sattethwaite Theorem, because preferences
are restricted. For example, students only care about their own university; their util-
ity functions are assumed to be unaffected by the assignment of universities to other
students.

The TTC mechanism guarantees that the final allocation has the core property, which
is stronger than Pareto efficiency.

Proof. Fix the initial allocation a : I → H. Let t be the assignment generated by
the TTC. There is no C ⊂ I such that members in C can all rearrange their initial
assingments so that b(c) �c t(c) for all c ∈ C. �

Theorem: Roth and Postlewaite 1977
The matching produced by Gale’s TTC algorithm is the unique core matching.

Theorem: A mechanism is strategy–proof, Pareto–efficient, and individually rational

t(i) �i a(i) for all i

if and only if it is the TTC.

The outcome of the TCC mechanism will depend on the initial assignment.
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Example: Top Trading Cycle Algorithm
Consider the TCC mechanism given the following strict preferences.

1 : h3 � h2 � h4 � h1

2 : h1 � h4 � h2 � h3

3 : h1 � h2 � h3 � h4

4 : h3 � h2 � h1 � h4

Assume starting assignment: a(1) = h1, a(2) = h2, a(3) = h3, and a(4) = h4. The top
trading cycles are
• Step 1: 1→ 3→ 1.
• Step 2: 2→ 4→ 2.

The final assignment is t(1) = h3, t(2) = h4, t(3) = h1, and t(4) = h2.

Suppose, however, that the starting assignment is: a(1) = h3, a(2) = h2, a(3) = h4, and
a(4) = h1. The top trading cycles are
• Step 1: 1→ 1.
• Step 2: 2→ 4→ 2.

The final assignment is t(1) = h3, t(2) = h1, t(3) = h4, and t(4) = h2.

Suppose, however, that the starting assignment is: a(1) = h1, a(2) = h2, a(3) = h4, and
a(4) = h3. The top trading cycles are
• Step 1: 4→ 4.
• Step 2: 1→ 2→ 1.
• Step 3: 3→ 3.

The final assignment is t(1) = h2, t(2) = h1, t(3) = h4, and t(4) = h2.

The outcome of the TCC mechanism depends on the initial assignment.
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3.18.5. Serial Choice Algorithm

In order to apply the top trading cycle algorithm, we need to start form some initial
assignment. The outcome will depend on this assignment. Imagine that no such assign-
ment is given. Then we can choose it randomly and then apply the top trading cycle
algorithm. Alternatively, we can use the serial choice algorithm.

The Serial Choice Algorithm:
• Pick a random order for all agents.
• Let the first agent in the order pick her best choice.
• Let the second agent in the order pick her best choice among the remaining choices.
• Repeat until all choices have been exhausted.

The outcome is Pareto efficient and strategy proof.

Proof. Suppose that agent i completes a cycle in round k. The top trading cycles that
agent i can complete before round k are still available at round k. All trading cycles
that agent i can complete after round k provide no better alternatives than what she
gets in round k. �

The outcome is dictatorial, because the first agent in the order always gets her most
favorite choice. Moreover, it is obvious that this mechanism is not manipulable. Observe,
however, that if agents can exchange money, then Pareto efficiency is not guaranteed
any more.

Example: Serial Choice Algorithm
Consider the serial choice algorithm given the following strict preferences.

1 : h3 � h2 � h4 � h1

2 : h1 � h4 � h2 � h3

3 : h1 � h2 � h3 � h4

4 : h3 � h2 � h1 � h4

Assume a random order for all agents: 1 > 2 > 3 > 4. The serial choice assignment is
t(1) = h3, t(2) = h1, t(3) = h2, and t(4) = h4.

Suppose, however, that the random order for all agents is: 4 > 3 > 2 > 1. Then the
serial choice assignment is t(1) = h2, t(2) = h4, t(3) = h1, and t(4) = h3.

The outcome of the serial choice algorithm will depend on the random order of the
agents.
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3.18.6. Deferred Acceptance Algorithms in Two-Sided Markets

Empirical evidence (Roth and Peranson, 1998) shows that deferred acceptance algo-
rithms do a very good job achieving stability even for large groups (i.e. > 20, 000 agents
with 20, 000 vacancies). Note that allowing for couple matching is complex 11.

The Deferred Acceptance Algorithm:
• Step 1: Each m ∈M makes a proposal to their best choice W ∪ {single}. Each w

tentatively accepts the best proposal and rejects all others.
• Step 2: All rejected m make proposals to all w who have not rejected them yet.

Each w tentatively accepts the best proposal and rejects all others.
• Repeat until there is a stable matching (as both M and W are finite, the algorithm

must stop at some point).

Theorem: Gale–Shapley 1962
A stable matching exists for any two–sided market with strict preferences.

Proof. If w likes some m more than the outcome of the DAA, then m never proposed
to her. Thus, m is matched to somebody that he likes better than w. �

Theorem: Knuth
When all agents have strict preferences, all m have the same ranking across all stable
matches, and all women have the same ranking across all stable matchings, then the two
rankings are opposite to each other.

11 The Roth Peranson algorithm allows for couples.
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3.19. Matching—Marriage Problems

3.19.1. The College Admissions Problem

There are S students and C colleges. Each student has a preference (utility) over C ∪
{single} (some colleges can be unacceptable altogether). Each college has a preference
over students (some students can be unacceptable altogether).

Definition: A quota q(c) determines how many agents a company c can possibly hire.

A matching F : S → C ∪ {single} assigns a college c to each student s. The number of
students assigned to college c cannot exceed q(c). Note that the corresponding matching
function G : C → S takes S as values, so F is more convenient.

To take account of individual incentives for both colleges and students, consider the
concept of stability. Say that a matching F is stable if
• F (s) � {single} for all students s.
• F (s) = c implies that s is acceptable for c.
• There is no pair of a college c and a student s such that the student strictly prefers
c to F (s) and c prefers s to some other s′ such that F (s′) = c.
• There is no pair of a college c and a student s such that the student strictly prefers
c to F (s), s is acceptable for c, and the college c is matched with fewer than q(c)
students under F .

Under additional assumptions on the college utility functions, stability implies Pareto efficiency.
Stable matchings always exist and can be obtained through the student–proposing Stu-
dent optimal deferred acceptance algorithm (SODA) or the college–proposing College
optimal deferred acceptance algorithm (CODA).

3.19.2. Student optimal deferred acceptance algorithm (SODA)

The SODA:
• Each student proposes (applies) to her favorite college. Then each college c provi-

sionally accepts q(c) students out of those who have applied. If less are available,
then fewer are provisionally accepted. Once a student is rejected, she cannot reap-
ply to college.
• At the next round, the rejected students apply to their next best choice. The

colleges repeat with the pool of conditionally accepted and the new applicants.
• The process continues until all students are accepted by a college or rejected by

all.

Example: SODA
Students A, B, C apply to colleges X, Y , Z. All quotas are 1. Preferences are

A : Y � X � Z X : B � C � A
B : X � Z � Y Y : B � C � A
C : X � Z � Y Z : A � B � C

Solution:

• Step 1: A applies to Y ; B and C apply to X. Y provisionally accepts A; X
provisionally accepts B.
• Step 2: C applies to Z. Z provisionally accepts C.

The matching (AY,BX,CZ) becomes final.
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3.19.3. College optimal deferred acceptance algorithm (CODA)

The CODA:
• Each college makes q(c) offers to potential students. Students provisionally accept

the best of the current offers and reject all others.
• Colleges make more offers to replace rejections. Students provisionally accept a

better offer if they get one.
• The process continues until all colleges fill their quota q(c) or are rejected by all

acceptable students.

Example: CODA
Colleges X, Y , Z make offers to students A, B, C. All quotas are 1. Preferences are

A : Y � X � Z X : B � C � A
B : X � Z � Y Y : B � C � A
C : X � Z � Y Z : A � B � C

Solution:

• Step 1: Z admits A; X and Y both admit B. A tentatively accepts Z; B accepts
X.
• Step 2: Y admits C. C accepts Y .

The matching (AZ,BX,CY ) becomes final.

3.19.4. Stability

The outcomes of SODA and CODA can be different. It is always weakly better to make
offers rather than to have an opportunity to reject them. Thus, SODA provides better
outcomes for students and CODA provides better outcomes for colleges.

Theorem: Gale
Given that all preferences are revealed truthfully, both SODA and CODA achieve sta-
bility.

3.19.5. Manipulability

Both SODA and CODA achieve stability, but they are manipulable by the rejecting side.

Theorem: Roth 1982
There is no method that achieves stability in a non-manipulated and non-dictatorial
fashion.

Theorem: Sonmez 1997
Companies (colleges) will have incentives to hide their true capacity.

Theorem: Roth JET 1985
Truth–telling is a dominant strategy for all students under the student–optimal stable
mechanism.

When the market is large, it becomes unlikely that schools can profitably misrepresent
their preferences (Immorlica and Mahdian 2005, Kojima and Pathak 2008).

Theorem: The Rural Hospital Theorem (Roth and Ecta 1986)
Any college that does not fill all its positions at some stable matching is assigned precisely
the same set of students at every stable matching.
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